Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix Factorization

被引:177
|
作者
Gillis, Nicolas [1 ]
Vavasis, Stephen A. [2 ]
机构
[1] Univ Mons, Dept Math & Operat Res, Fac Polytech, B-7000 Mons, Hainaut, Belgium
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Nonnegative matrix factorization; algorithms; separability; robustness; hyperspectral unmixing; linear mixing model; pure-pixel assumption; SPARSE; MODEL;
D O I
10.1109/TPAMI.2013.226
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study the nonnegative matrix factorization problem under the separability assumption ( that is, there exists a cone spanned by a small subset of the columns of the input nonnegative data matrix containing all columns), which is equivalent to the hyperspectral unmixing problem under the linear mixing model and the pure-pixel assumption. We present a family of fast recursive algorithms and prove they are robust under any small perturbations of the input data matrix. This family generalizes several existing hyperspectral unmixing algorithms and hence provides for the first time a theoretical justification of their better practical performance.
引用
收藏
页码:698 / 714
页数:17
相关论文
共 50 条
  • [21] Algorithms for audio inpainting based on probabilistic nonnegative matrix factorization
    Mokry, Ondrej
    Magron, Paul
    Oberlin, Thomas
    Fevotte, Cedric
    SIGNAL PROCESSING, 2023, 206
  • [22] Hyperspectral Unmixing Using Robust Deep Nonnegative Matrix Factorization
    Huang, Risheng
    Jiao, Huiyun
    Li, Xiaorun
    Chen, Shuhan
    Xia, Chaoqun
    REMOTE SENSING, 2023, 15 (11)
  • [23] Distributionally Robust and Multi-Objective Nonnegative Matrix Factorization
    Gillis, Nicolas
    Le Thi Khanh Hien
    Leplat, Valentin
    Tan, Vincent Y. F.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (08) : 4052 - 4064
  • [24] A Provably Correct and Robust Algorithm for Convolutive Nonnegative Matrix Factorization
    Degleris, Anthony
    Gillis, Nicolas
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 (2499-2512) : 2499 - 2512
  • [25] Online Nonnegative Matrix Factorization With Outliers
    Zhao, Renbo
    Tan, Vincent Y. F.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (03) : 555 - 570
  • [26] Nonnegative Matrix Factorization on Orthogonal Subspace
    Li, Zhao
    Wu, Xindong
    Peng, Hong
    PATTERN RECOGNITION LETTERS, 2010, 31 (09) : 905 - 911
  • [27] Heuristics for exact nonnegative matrix factorization
    Vandaele, Arnaud
    Gillis, Nicolas
    Glineur, Francois
    Tuyttens, Daniel
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 65 (02) : 369 - 400
  • [28] XRAY Algorithm for Separable Nonnegative Tensor Factorization
    Zdunek, Rafal
    Sadowski, Tomasz
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT II, 2017, 10306 : 246 - 256
  • [29] Robust Graph Regularized Nonnegative Matrix Factorization for Clustering
    Peng, Chong
    Kang, Zhao
    Hu, Yunhong
    Cheng, Jie
    Cheng, Qiang
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2017, 11 (03)
  • [30] Robust graph regularized nonnegative matrix factorization for clustering
    Huang, Shudong
    Wang, Hongjun
    Li, Tao
    Li, Tianrui
    Xu, Zenglin
    DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (02) : 483 - 503