Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors

被引:641
作者
Wang, Xuebin [1 ,2 ]
Zhang, Yuanjian [3 ]
Zhi, Chunyi [4 ]
Wang, Xi [1 ]
Tang, Daiming [1 ]
Xu, Yibin [5 ]
Weng, Qunhong [1 ,6 ]
Jiang, Xiangfen [1 ,2 ]
Mitome, Masanori [1 ]
Golberg, Dmitri [1 ,6 ]
Bando, Yoshio [1 ,2 ]
机构
[1] Natl Inst Mat Sci, World Premier Int Ctr Mat Nanoarchitecton WPI MAN, Tsukuba, Ibaraki 3050044, Japan
[2] Waseda Univ, Fac Sci & Engn, Dept Nanosci & Nanoengn, Tokyo 1698555, Japan
[3] Southeast Univ, Sch Chem & Chem Engn, Nanjing 211189, Jiangsu, Peoples R China
[4] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong 999077, Hong Kong, Peoples R China
[5] NIMS, Environm & Energy Mat Div, Tsukuba, Ibaraki 3050047, Japan
[6] NIMS, Nanotube Grp, Tsukuba, Ibaraki 3050044, Japan
关键词
CHEMICAL-REDUCTION; DOPED GRAPHENE; CARBON-FILMS; ELECTRODES; HYDROGELS; NETWORKS; NITROGEN; ENERGY; FOAMS;
D O I
10.1038/ncomms3905
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three-dimensional graphene architectures in the macroworld can in principle maintain all the extraordinary nanoscale properties of individual graphene flakes. However, current 3D graphene products suffer from poor electrical conductivity, low surface area and insufficient mechanical strength/elasticity; the interconnected self-supported reproducible 3D graphenes remain unavailable. Here we report a sugar-blowing approach based on a polymeric predecessor to synthesize a 3D graphene bubble network. The bubble network consists of mono-or few-layered graphitic membranes that are tightly glued, rigidly fixed and spatially scaffolded by micrometre-scale graphitic struts. Such a topological configuration provides intimate structural interconnectivities, freeway for electron/phonon transports, huge accessible surface area, as well as robust mechanical properties. The graphene network thus overcomes the drawbacks of presently available 3D graphene products and opens up a wide horizon for diverse practical usages, for example, high-power high-energy electrochemical capacitors, as highlighted in this work.
引用
收藏
页数:8
相关论文
共 62 条
[1]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[2]   GROWTH, STRUCTURE, AND PROPERTIES OF GRAPHITE WHISKERS [J].
BACON, R .
JOURNAL OF APPLIED PHYSICS, 1960, 31 (02) :283-290
[3]   EELS ANALYSIS OF VACUUM ARC-DEPOSITED DIAMOND-LIKE FILMS [J].
BERGER, SD ;
MCKENZIE, DR ;
MARTIN, PJ .
PHILOSOPHICAL MAGAZINE LETTERS, 1988, 57 (06) :285-290
[4]   Decay of standing foams: drainage, coalescence and collapse [J].
Bhakta, A ;
Ruckenstein, E .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 1997, 70 :1-124
[5]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[6]   Preparation of Novel 3D Graphene Networks for Supercapacitor Applications [J].
Cao, Xiehong ;
Shi, Yumeng ;
Shi, Wenhui ;
Lu, Gang ;
Huang, Xiao ;
Yan, Qingyu ;
Zhang, Qichun ;
Zhang, Hua .
SMALL, 2011, 7 (22) :3163-3168
[7]   Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor [J].
Chen, Ping ;
Yang, Jing-Jing ;
Li, Shan-Shan ;
Wang, Zheng ;
Xiao, Tian-Yuan ;
Qian, Yu-Hong ;
Yu, Shu-Hong .
NANO ENERGY, 2013, 2 (02) :249-256
[8]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[9]   Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors [J].
Chmiola, John ;
Largeot, Celine ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Gogotsi, Yury .
SCIENCE, 2010, 328 (5977) :480-483
[10]   3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities [J].
Choi, Bong Gill ;
Yang, MinHo ;
Hong, Won Hi ;
Choi, Jang Wook ;
Huh, Yun Suk .
ACS NANO, 2012, 6 (05) :4020-4028