Characterization of homogeneity in orthocomplete atomic effect algebras

被引:6
作者
Ji, Wei [1 ,2 ]
机构
[1] Guilin Univ Technol, Coll Sci, Guilin 541004, Guangxi, Peoples R China
[2] Guilin Univ Technol, Guangxi Key Lab Spatial Informat & Geomat, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Effect algebra; Homogeneity; Basic decomposition of an element; Atomic decomposition; Sharp element; Smearing of a state; LATTICE EFFECT ALGEBRAS; ELEMENTS; BLOCKS; STATES; SHARP;
D O I
10.1016/j.fss.2013.06.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that homogeneity can be characterized by the decompositions of sharp elements in orthocomplete atomic effect algebras. Especially, an orthocomplete atomic effect algebra is homogeneous, if and only if the non-zero coefficient of an atom in any atomic decomposition of all sharp elements is the same, if and only if the non-zero coefficient of an atom in any atomic decomposition of the unit element is the same, which confirm the name "homogeneous". As an application, we prove the state smearing theorem for orthocomplete atomic homogeneous effect algebras. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 121
页数:9
相关论文
共 25 条
[1]  
Chovanec F., 1997, TATRA MT MATH PUBL, V10, P1
[2]  
Dvurecenskij A., 2000, NEW TRENDS QUANTUM S
[3]   EFFECT ALGEBRAS AND UNSHARP QUANTUM-LOGICS [J].
FOULIS, DJ ;
BENNETT, MK .
FOUNDATIONS OF PHYSICS, 1994, 24 (10) :1331-1352
[4]   Specification of finite effect algebras [J].
Foulis, DJ ;
Greechie, RJ .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (03) :665-676
[5]  
Greechie R. J., 1971, J COMBINATORIAL THEO, V10, P119, DOI [10.1016/0097-3165(71)90015-X, DOI 10.1016/0097-3165(71)90015-X]
[6]  
Gudder SP, 1998, TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 15, 1998, P23
[7]  
Jena G., 1999, BUSEFAL, V80, P24
[8]   Orthocomplete effect algebras [J].
Jenca, G ;
Pulmannová, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (09) :2663-2671
[9]   Blocks of homogeneous effect algebras [J].
Jenca, G .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 64 (01) :81-98
[10]   0-homogeneous effect algebras [J].
Jenca, Gejza .
SOFT COMPUTING, 2010, 14 (10) :1111-1116