Multi-parameter Hopf-bifurcation in HHM model exposed to ELF electric field

被引:0
|
作者
Jiang, Wang [1 ]
Che Yanqiu [1 ]
Fei Xiangyang [1 ]
Feng, Dong [1 ]
机构
[1] Tianjin Univ, Sch Elect & Automat Engn, Tianjin 300072, Peoples R China
来源
2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7 | 2005年
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The variation of cell trans-membrane voltage exposed to extremely low frequency (ELF) electric field is analyzed; a modified Hodgkin-Huxley model of muscle (HHM) is established by introducing a new parameter denoting the effect of external electric field, and the bifurcation caused by the new parameter as well as leakage conductance and sodium ions anti-electromotive force is studied. The algebra criterion in high dimension equations is employed to perform the analysis of multi-parameter dynamical bifurcation. The results are of biological significance and suggest that the aberration of dynamics in bio-systems may be accounted for diseases caused by electric exposure.
引用
收藏
页码:4646 / 4649
页数:4
相关论文
共 50 条
  • [12] SWEPT-PARAMETER-INDUCED POSTPONEMENTS AND NOISE ON THE HOPF-BIFURCATION
    FRONZONI, L
    MOSS, F
    MCCLINTOCK, PVE
    PHYSICAL REVIEW A, 1987, 36 (03): : 1492 - 1494
  • [13] A MULTI-PARAMETER BIFURCATION THEOREM
    HUILGOL, RR
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (06) : 1189 - 1194
  • [14] Global stability and Hopf-bifurcation in a zooplankton–phytoplankton model
    Yunfei Lv
    Jianzhi Cao
    Juan Song
    Rong Yuan
    Yongzhen Pei
    Nonlinear Dynamics, 2014, 76 : 345 - 366
  • [15] THE HOPF-BIFURCATION IN THE LORENZ MODEL BY THE 2-TIMING METHOD
    TSAROUHAS, G
    PADE, J
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1986, 138 (03) : 507 - 517
  • [17] An efficient center manifold technique for Hopf bifurcation of n-dimensional multi-parameter systems
    Markakis, M. P.
    Douris, P. S.
    APPLIED MATHEMATICAL MODELLING, 2017, 50 : 300 - 313
  • [18] Global stability and Hopf-bifurcation in a zooplankton-phytoplankton model
    Lv, Yunfei
    Cao, Jianzhi
    Song, Juan
    Yuan, Rong
    Pei, Yongzhen
    NONLINEAR DYNAMICS, 2014, 76 (01) : 345 - 366
  • [19] AN INDIRECT METHOD FOR COMPUTING ORIGINS FOR HOPF-BIFURCATION IN 2-PARAMETER PROBLEMS
    PONISCH, G
    COMPUTING, 1991, 46 (04) : 307 - 320
  • [20] Multi-parameter uncertainty analysis of a bifurcation point
    Knopf, B.
    Flechsig, M.
    Zickfeld, K.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2006, 13 (05) : 531 - 540