Compact Integration of Multi-Network Topology for Functional Analysis of Genes

被引:178
作者
Cho, Hyunghoon [1 ]
Berger, Bonnie [1 ,2 ]
Peng, Jian [1 ,3 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
[3] Univ Illinois, Dept Comp Sci, Champaign, IL 61801 USA
关键词
PROTEIN FUNCTION; ASSOCIATION; PREDICTION; ALGORITHM; ONTOLOGY; CENTRALITY; DIFFUSION; ALIGNMENT; TOOL;
D O I
10.1016/j.cels.2016.10.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The topological landscape of molecular or functional interaction networks provides a rich source of information for inferring functional patterns of genes or proteins. However, a pressing yet-unsolved challenge is how to combine multiple heterogeneous networks, each having different connectivity patterns, to achieve more accurate inference. Here, we describe the Mashup framework for scalable and robust network integration. In Mashup, the diffusion in each network is first analyzed to characterize the topological context of each node. Next, the high-dimensional topological patterns in individual networks are canonically represented using lowdimensional vectors, one per gene or protein. These vectors can then be plugged into off-the-shelf machine learning methods to derive functional insights about genes or proteins. We present tools based on Mashup that achieve state-of-the-art performance in three diverse functional inference tasks: protein function prediction, gene ontology reconstruction, and genetic interaction prediction. Mashup enables deeper insights into the structure of rapidly accumulating and diverse biological network data and can be broadly applied to other network science domains.
引用
收藏
页码:540 / +
页数:14
相关论文
共 62 条
[1]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[2]   AN IMPROVED INDEX OF CENTRALITY [J].
BEAUCHAMP, MA .
BEHAVIORAL SCIENCE, 1965, 10 (02) :161-163
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   Computational solutions for omics data [J].
Berger, Bonnie ;
Peng, Jian ;
Singh, Mona .
NATURE REVIEWS GENETICS, 2013, 14 (05) :333-346
[5]   FACTORING AND WEIGHTING APPROACHES TO STATUS SCORES AND CLIQUE IDENTIFICATION [J].
BONACICH, P .
JOURNAL OF MATHEMATICAL SOCIOLOGY, 1972, 2 (01) :113-120
[6]  
Brandes U, 2005, LECT NOTES COMPUT SC, V3404, P533
[7]   A faster algorithm for betweenness centrality [J].
Brandes, U .
JOURNAL OF MATHEMATICAL SOCIOLOGY, 2001, 25 (02) :163-177
[8]   New directions for diffusion-based network prediction of protein function: incorporating pathways with confidence [J].
Cao, Mengfei ;
Pietras, Christopher M. ;
Feng, Xian ;
Doroschak, Kathryn J. ;
Schaffner, Thomas ;
Park, Jisoo ;
Zhang, Hao ;
Cowen, Lenore J. ;
Hescott, Benjamin J. .
BIOINFORMATICS, 2014, 30 (12) :219-227
[9]   Harnessing synthetic lethal interactions in anticancer drug discovery [J].
Chan, Denise A. ;
Giaccia, Amato J. .
NATURE REVIEWS DRUG DISCOVERY, 2011, 10 (05) :351-364
[10]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)