A Study of Hyperbolicity of Kinetic Stochastic Galerkin System for the Isentropic Euler Equations with Uncertainty

被引:8
|
作者
Jin, Shi [1 ,2 ]
Shu, Ruiwen [3 ]
机构
[1] Shanghai Jiao Tong Univ, MOE LSEC, Inst Nat Sci, Sch Math Sci, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, SHL MAC, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[3] Univ Maryland, Dept Math, 4176 Campus Dr, College Pk, MD 20742 USA
基金
中国国家自然科学基金;
关键词
Hyperbolic equations; Uncertainty quantification; Stochastic Galerkin methods; PARTIAL-DIFFERENTIAL-EQUATIONS; FOKKER-PLANCK SYSTEM; UNIFORM REGULARITY; COLLOCATION METHOD; HYPOCOERCIVITY; SPACE; MODEL;
D O I
10.1007/s11401-019-0159-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors study the fluid dynamic behavior of the stochastic Galerkin (SG for short) approximation to the kinetic Fokker-Planck equation with random uncertainty. While the SG system at the kinetic level is hyperbolic, its fluid dynamic limit, as the Knudsen number goes to zero and the underlying kinetic equation approaches to the uncertain isentropic Euler equations, is not necessarily hyperbolic, as will be shown in the case study fashion for various orders of the SG approximations.
引用
收藏
页码:765 / 780
页数:16
相关论文
共 42 条
  • [1] A Study of Hyperbolicity of Kinetic Stochastic Galerkin System for the Isentropic Euler Equations with Uncertainty
    Shi JIN
    Ruiwen SHU
    ChineseAnnalsofMathematics,SeriesB, 2019, (05) : 765 - 780
  • [2] A Study of Hyperbolicity of Kinetic Stochastic Galerkin System for the Isentropic Euler Equations with Uncertainty
    Shi Jin
    Ruiwen Shu
    Chinese Annals of Mathematics, Series B, 2019, 40 : 765 - 780
  • [3] STOCHASTIC ISENTROPIC EULER EQUATIONS
    Berthelin, Florent
    Vovelle, Julien
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2019, 52 (01): : 181 - 254
  • [4] A kinetic model for approximately isentropic solutions of the Euler equations
    Perepelitsa, Misha
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (11) : 8229 - 8241
  • [5] Optimal Transport for the System of Isentropic Euler Equations
    Gangbo, Wilfrid
    Westdickenberg, Michael
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (09) : 1041 - 1073
  • [6] A stochastic Galerkin method for Maxwell equations with uncertainty
    Lizheng Cheng
    Bo Wang
    Ziqing Xie
    Acta Mathematica Scientia, 2020, 40 : 1091 - 1104
  • [7] A STOCHASTIC GALERKIN METHOD FOR MAXWELL EQUATIONS WITH UNCERTAINTY
    程立正
    汪波
    谢资清
    ActaMathematicaScientia, 2020, 40 (04) : 1091 - 1104
  • [8] A stochastic Galerkin method for Maxwell equations with uncertainty
    Cheng, Lizheng
    Wang, Bo
    Xie, Ziqing
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (04) : 1091 - 1104
  • [9] A stochastic Galerkin method for the Euler equations with Roe variable transformation
    Pettersson, Per
    Iaccarino, Gianluca
    Nordstrom, Jan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 : 481 - 500
  • [10] A hyperbolicity-preserving stochastic Galerkin approximation for uncertain hyperbolic systems of equations
    Schlachter, Louisa
    Schneider, Florian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 375 : 80 - 98