Antichiral states in twisted graphene multilayers

被引:24
作者
Denner, M. Michael [1 ,2 ]
Lado, J. L. [1 ,3 ]
Zilberberg, Oded [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] Univ Zurich, Dept Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] Aalto Univ, Dept Appl Phys, Espoo 00076, Finland
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 04期
基金
芬兰科学院; 瑞士国家科学基金会;
关键词
EDGE STATES; REALIZATION; BANDS; MODEL;
D O I
10.1103/PhysRevResearch.2.043190
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The advent of topological phases of matter revealed a variety of observed boundary phenomena, such as chiral and helical modes found at the edges of two-dimensional (2D) topological insulators. Antichiral states in 2D semimetals, i.e., copropagating edge modes on opposite edges compensated by a counterpropagating bulk current, are also predicted, but, to date, no realization of such states in a solid-state system has been found. Here, we put forward a procedure to realize antichiral states in twisted van der Waals multilayers, by combining the electronic Dirac-cone spectra of each layer through the combination of the orbital moire superstructure, an in-plane magnetic field, and interlayer bias voltage. In particular, we demonstrate that a twisted van der Waals heterostructure consisting of graphene/two layers of hexagonal boron nitride [(hBN)(2)]/graphene will show antichiral states at in-plane magnetic fields of 8 T, for a rotation angle of 0.2 degrees between the graphene layers. Our findings engender a controllable procedure to engineer antichiral states in solid-state systems, as well as in quantum engineered metamaterials.
引用
收藏
页数:8
相关论文
共 68 条
[11]   Antichiral Edge States in a Modified Haldane Nanoribbon [J].
Colomes, E. ;
Franz, M. .
PHYSICAL REVIEW LETTERS, 2018, 120 (08)
[12]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[13]   Zak phase and the existence of edge states in graphene [J].
Delplace, P. ;
Ullmo, D. ;
Montambaux, G. .
PHYSICAL REVIEW B, 2011, 84 (19)
[14]   Graphene bilayer with a twist: Electronic structure [J].
dos Santos, J. M. B. Lopes ;
Peres, N. M. R. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (25)
[15]   Experimental reconstruction of the Berry curvature in a Floquet Bloch band [J].
Flaeschner, N. ;
Rem, B. S. ;
Tarnowski, M. ;
Vogel, D. ;
Luehmann, D. -S. ;
Sengstock, K. ;
Weitenberg, C. .
SCIENCE, 2016, 352 (6289) :1091-1094
[16]   Peculiar localized state at zigzag graphite edge [J].
Fujita, M ;
Wakabayashi, K ;
Nakada, K ;
Kusakabe, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) :1920-1923
[17]   Designer Dirac fermions and topological phases in molecular graphene [J].
Gomes, Kenjiro K. ;
Mar, Warren ;
Ko, Wonhee ;
Guinea, Francisco ;
Manoharan, Hari C. .
NATURE, 2012, 483 (7389) :306-310
[18]   Electrically Controllable Magnetism in Twisted Bilayer Graphene [J].
Gonzalez-Arraga, Luis A. ;
Lado, J. L. ;
Guinea, Francisco ;
San-Jose, Pablo .
PHYSICAL REVIEW LETTERS, 2017, 119 (10)
[19]   Engineering of robust topological quantum phases in graphene nanoribbons [J].
Groning, Oliver ;
Wang, Shiyong ;
Yao, Xuelin ;
Pignedoli, Carlo A. ;
Barin, Gabriela Borin ;
Daniels, Colin ;
Cupo, Andrew ;
Meunier, Vincent ;
Feng, Xinliang ;
Narita, Akimitsu ;
Muellen, Klaus ;
Ruffieux, Pascal ;
Fasel, Roman .
NATURE, 2018, 560 (7717) :209-+
[20]   A ballistic pn junction in suspended graphene with split bottom gates [J].
Grushina, Anya L. ;
Ki, Dong-Keun ;
Morpurgo, Alberto F. .
APPLIED PHYSICS LETTERS, 2013, 102 (22)