Convergence Analysis of Exponential Time Differencing Schemes for the Cahn-Hilliard Equation

被引:28
作者
Li, Xiao [1 ]
Ju, Lili [1 ]
Meng, Xucheng [1 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Cahn-Hilliard equation; exponential time differencing; convergence analysis; uniform L-infinity boundedness; FOURIER-SPECTRAL METHODS; NONLOCAL ALLEN-CAHN; RUNGE-KUTTA METHODS; STEPPING STRATEGY; ENERGY; APPROXIMATIONS; DYNAMICS;
D O I
10.4208/cicp.2019.js60.12
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we rigorously prove the convergence of fully discrete first-and second-order exponential time differencing schemes for solving the Cahn-Hilliard equation. Our analyses mainly follow the standard procedure with the consistency and stability estimates for numerical error functions, while the technique of higher-order consistency analysis is adopted in order to obtain the uniform L-infinity boundedness of the numerical solutions under some moderate constraints on the time step and spatial mesh sizes. This paper provides a theoretical support for numerical analysis of exponential time differencing and other related numerical methods for phase field models, in which an assumption on the uniform L-infinity boundedness is usually needed.
引用
收藏
页码:1510 / 1529
页数:20
相关论文
共 42 条
[21]   On large time-stepping methods for the Cahn-Hilliard equation [J].
He, Yinnian ;
Liu, Yunxian ;
Tang, Tao .
APPLIED NUMERICAL MATHEMATICS, 2007, 57 (5-7) :616-628
[22]   Explicit exponential Runge-Kutta methods for semilinear parabolic problems [J].
Hochbruck, M ;
Ostermann, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) :1069-1090
[23]   On Krylov subspace approximations to the matrix exponential operator [J].
Hochbruck, M ;
Lubich, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1911-1925
[24]  
Hochbruck M, 2010, ACTA NUMER, V19, P209, DOI 10.1017/S0962492910000048
[25]   ENERGY STABILITY AND ERROR ESTIMATES OF EXPONENTIAL TIME DIFFERENCING SCHEMES FOR THE EPITAXIAL GROWTH MODEL WITHOUT SLOPE SELECTION [J].
Ju, Lili ;
Li, Xiao ;
Qiao, Zhonghua ;
Zhang, Hui .
MATHEMATICS OF COMPUTATION, 2018, 87 (312) :1859-1885
[26]   Exponential Time Differencing Gauge Method for Incompressible Viscous Flows [J].
Ju, Lili ;
Wang, Zhu .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 22 (02) :517-541
[27]   Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations [J].
Ju, Lili ;
Zhang, Jian ;
Du, Qiang .
COMPUTATIONAL MATERIALS SCIENCE, 2015, 108 :272-282
[28]   Fast Explicit Integration Factor Methods for Semilinear Parabolic Equations [J].
Ju, Lili ;
Zhang, Jian ;
Zhu, Liyong ;
Du, Qiang .
JOURNAL OF SCIENTIFIC COMPUTING, 2015, 62 (02) :431-455
[29]   ON THE STABILIZATION SIZE OF SEMI-IMPLICIT FOURIER-SPECTRAL METHODS FOR 3D CAHN-HILLIARD EQUATIONS [J].
Li, Dong ;
Qiao, Zhonghua .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (06) :1489-1506
[30]   On Second Order Semi-implicit Fourier Spectral Methods for 2D Cahn-Hilliard Equations [J].
Li, Dong ;
Qiao, Zhonghua .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (01) :301-341