In this paper, we rigorously prove the convergence of fully discrete first-and second-order exponential time differencing schemes for solving the Cahn-Hilliard equation. Our analyses mainly follow the standard procedure with the consistency and stability estimates for numerical error functions, while the technique of higher-order consistency analysis is adopted in order to obtain the uniform L-infinity boundedness of the numerical solutions under some moderate constraints on the time step and spatial mesh sizes. This paper provides a theoretical support for numerical analysis of exponential time differencing and other related numerical methods for phase field models, in which an assumption on the uniform L-infinity boundedness is usually needed.
机构:
UNIV BUENOS AIRES, FAC CIENCIAS EXACTAS, DEPT MATEMAT, BUENOS AIRES, DF, ARGENTINAUNIV BUENOS AIRES, FAC CIENCIAS EXACTAS, DEPT MATEMAT, BUENOS AIRES, DF, ARGENTINA
Caffarelli, LA
;
Muler, NE
论文数: 0引用数: 0
h-index: 0
机构:
UNIV BUENOS AIRES, FAC CIENCIAS EXACTAS, DEPT MATEMAT, BUENOS AIRES, DF, ARGENTINAUNIV BUENOS AIRES, FAC CIENCIAS EXACTAS, DEPT MATEMAT, BUENOS AIRES, DF, ARGENTINA
机构:
UNIV BUENOS AIRES, FAC CIENCIAS EXACTAS, DEPT MATEMAT, BUENOS AIRES, DF, ARGENTINAUNIV BUENOS AIRES, FAC CIENCIAS EXACTAS, DEPT MATEMAT, BUENOS AIRES, DF, ARGENTINA
Caffarelli, LA
;
Muler, NE
论文数: 0引用数: 0
h-index: 0
机构:
UNIV BUENOS AIRES, FAC CIENCIAS EXACTAS, DEPT MATEMAT, BUENOS AIRES, DF, ARGENTINAUNIV BUENOS AIRES, FAC CIENCIAS EXACTAS, DEPT MATEMAT, BUENOS AIRES, DF, ARGENTINA