Convergence Analysis of Exponential Time Differencing Schemes for the Cahn-Hilliard Equation

被引:28
作者
Li, Xiao [1 ]
Ju, Lili [1 ]
Meng, Xucheng [1 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Cahn-Hilliard equation; exponential time differencing; convergence analysis; uniform L-infinity boundedness; FOURIER-SPECTRAL METHODS; NONLOCAL ALLEN-CAHN; RUNGE-KUTTA METHODS; STEPPING STRATEGY; ENERGY; APPROXIMATIONS; DYNAMICS;
D O I
10.4208/cicp.2019.js60.12
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we rigorously prove the convergence of fully discrete first-and second-order exponential time differencing schemes for solving the Cahn-Hilliard equation. Our analyses mainly follow the standard procedure with the consistency and stability estimates for numerical error functions, while the technique of higher-order consistency analysis is adopted in order to obtain the uniform L-infinity boundedness of the numerical solutions under some moderate constraints on the time step and spatial mesh sizes. This paper provides a theoretical support for numerical analysis of exponential time differencing and other related numerical methods for phase field models, in which an assumption on the uniform L-infinity boundedness is usually needed.
引用
收藏
页码:1510 / 1529
页数:20
相关论文
共 42 条
[1]   ANALYSIS AND APPROXIMATION OF A FRACTIONAL CAHN-HILLIARD EQUATION [J].
Ainsworth, Mark ;
Mao, Zhiping .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) :1689-1718
[2]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[3]  
[Anonymous], 2008, Functions of matrices
[4]   Inpainting of binary images using the Cahn-Hilliard equation [J].
Bertozzi, Andrea L. ;
Esedoglu, Selim ;
Gillette, Alan .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (01) :285-291
[5]   An L(infinity) bound for solutions of the Cahn-Hilliard equation [J].
Caffarelli, LA ;
Muler, NE .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 133 (02) :129-144
[6]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[7]   Phase-field models for microstructure evolution [J].
Chen, LQ .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :113-140
[8]   Exponential time differencing for stiff systems [J].
Cox, SM ;
Matthews, PC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 176 (02) :430-455
[9]   Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions [J].
Du, Q ;
Liu, C ;
Wang, XQ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 212 (02) :757-777
[10]   NUMERICAL-ANALYSIS OF A CONTINUUM MODEL OF PHASE-TRANSITION [J].
DU, Q ;
NICOLAIDES, RA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (05) :1310-1322