Composite Chitosan/Nano-Hydroxyapatite Scaffolds Induce Osteocalcin Production by Osteoblasts In Vitro and Support Bone Formation In Vivo

被引:113
作者
Chesnutt, Betsy M. [1 ]
Yuan, Youling [1 ]
Buddington, Karyl [1 ]
Haggard, Warren O. [1 ]
Bumgardner, Joel D. [1 ]
机构
[1] Univ Memphis, Dept Biomed Engn, Herff Coll Engn, Memphis, TN 38152 USA
关键词
CELL ATTACHMENT; PHOSPHATE; GROWTH; MINERALIZATION; NANOPARTICLES; EXPRESSION; MEMBRANE; FIXATION; MATRIX; GENE;
D O I
10.1089/ten.tea.2008.0054
中图分类号
Q813 [细胞工程];
学科分类号
摘要
There is a significant clinical need to develop alternatives to autografts and allografts for bone grafting procedures. Porous, biodegradable scaffolds based on the biopolymer chitosan have been investigated as bone graft substitutes, and the addition of calcium phosphate to these scaffolds has been shown to improve the mechanical properties of the scaffold and may increase osteoconductivity. In this study, in vitro mineralization was examined for osteoblasts seeded in a porous scaffold composed of fused chitosan/nano-hydroxyapatite microspheres. Human fetal osteoblasts were cultured on composite and chitosan scaffolds for 21 days. On days 1, 4, 7, 14, and 21, total dsDNA, alkaline phosphatase, type I collagen, and osteocalcin production were measured. Total cellularity (measured by dsDNA), alkaline phosphatase, and type I collagen production were similar between the two scaffold groups. However, osteocalcin production occurred significantly earlier (day 7 vs. day 21) and was more than three times greater (0.0022 vs. 0.0068 ng/mL/ng DNA) on day 21 when osteoblasts were cultured on composite scaffolds. Osteocalcin is a marker of late osteoblastic differentiation and mineralized bone matrix formation. Therefore, the increase in osteocalcin production seen when cells were cultured on composite scaffolds may indicate that these scaffolds were superior to chitosan-only scaffolds in facilitating osteoblast mineralization. Composite scaffolds were also shown to be biocompatible and osteoconductive in a preliminary critical size rat calvarial defect study. These results demonstrate the potential of composite chitosan/nanohydroxyapatite scaffolds to be used in bone tissue engineering.
引用
收藏
页码:2571 / 2579
页数:9
相关论文
共 59 条
[1]   Chitosan membrane as a wound-healing dressing: Characterization and clinical application [J].
Azad, AK ;
Sermsintham, N ;
Chandrkrachang, S ;
Stevens, WF .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2004, 69B (02) :216-222
[2]   Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants [J].
Bumgardner, JD ;
Wiser, R ;
Gerard, PD ;
Bergin, P ;
Chestnutt, B ;
Marini, M ;
Ramsey, V ;
Elder, SH ;
Gilbert, JA .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2003, 14 (05) :423-438
[3]   Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium [J].
Bumgardner, JD ;
Wiser, R ;
Elder, SH ;
Jouett, R ;
Yang, Y ;
Ong, JL .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2003, 14 (12) :1401-1409
[4]   The integration of chitosan-coated titanium in bone:: An in vivo study in rabbits [J].
Bumgardner, Joel D. ;
Chesnutt, Betsy M. ;
Yuan, Youling ;
Yang, Yunzhi ;
Appleford, Mark ;
Oh, Sunho ;
McLaughlin, Ronald ;
Elder, Steven H. ;
Ong, Joo L. .
IMPLANT DENTISTRY, 2007, 16 (01) :66-79
[5]  
Caetano-Lopes J, 2007, ACTA REUMATOL PORT, V32, P103
[6]  
Campbell AA, 1996, J BIOMED MATER RES, V32, P111, DOI 10.1002/(SICI)1097-4636(199609)32:1<111::AID-JBM13>3.0.CO
[7]  
2-P
[8]   Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration [J].
Chesnutt, Betsy M. ;
Viano, Ann M. ;
Yuan, Youling ;
Yang, Yunzhi ;
Guda, Teja ;
Appleford, Mark R. ;
Ong, Joo L. ;
Haggard, Warren O. ;
Burngardner, Joel D. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2009, 88A (02) :491-502
[9]   Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles [J].
Corsi, K ;
Chellat, F ;
Yahia, L ;
Fernandes, JC .
BIOMATERIALS, 2003, 24 (07) :1255-1264
[10]   Chitosan: A versatile biopolymer for orthopaedic tissue-engineering [J].
Di Martino, A ;
Sittinger, M ;
Risbud, MV .
BIOMATERIALS, 2005, 26 (30) :5983-5990