Shadowing with chain transitivity

被引:15
作者
Dastjerdi, Dawoud Ahmadi [1 ]
Hosseini, Maryam [1 ]
机构
[1] Univ Guilan, Dept Math, Rasht, Iran
关键词
Chain transitivity; Chain recurrent; Shadowing; Distal;
D O I
10.1016/j.topol.2009.04.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A transitive dynamical system is either sensitive or has a dense set of equicontinuity points [E. Akin, J. Auslander, K. Berg, When is a transitive map chaotic, in: Convergence in Ergodic Theory and Probability, Walter de Gruyter & Co.. 1996, pp. 25-40]. We show that if a chain transitive system has shadowing property then it is either sensitive or all points are equicontinuous. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2193 / 2195
页数:3
相关论文
共 9 条
[1]  
Akin E, 1996, OHIO ST U M, V5, P25
[2]  
AKIN E, 2002, IHESM0297, P97
[3]  
[Anonymous], 1975, LECT NOTES MATH
[4]   Dynamical behaviour of Coven's aperiodic cellular automata [J].
Blanchard, F ;
Maass, A .
THEORETICAL COMPUTER SCIENCE, 1996, 163 (1-2) :291-302
[5]  
Blanchard F, 2002, J REINE ANGEW MATH, V547, P51
[6]  
Brin M., 2002, Introduction to dynamical systems, DOI DOI 10.1017/CBO9780511755316
[7]   SENSITIVE DEPENDENCE ON INITIAL CONDITIONS [J].
GLASNER, E ;
WEISS, B .
NONLINEARITY, 1993, 6 (06) :1067-1075
[8]  
HINDMAN N, 1998, DEGRUYTER EXP MATH, V27
[9]  
[No title captured]