Variable integral and smooth exponent Besov spaces associated to non-negative self-adjoint operators

被引:2
作者
Xu, Jingshi [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Besov space; variable exponent; maximal function; non-negative self-adjoint operators; atomic decomposition; ORLICZ-HARDY SPACES; MAXIMAL-FUNCTION CHARACTERIZATIONS; STRONGLY LIPSCHITZ-DOMAINS; TRIEBEL-LIZORKIN SPACES; 2-MICROLOCAL BESOV; RIESZ TRANSFORMS; LEBESGUE SPACES; BOUNDEDNESS; DECOMPOSITION;
D O I
10.1007/s11464-020-0886-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the variable integral and the smooth exponent Besov spaces associated to non-negative self-adjoint operators. Then we give the equivalent norms via the Peetre type maximal functions and atomic decomposition of these spaces.
引用
收藏
页码:1245 / 1263
页数:19
相关论文
共 47 条
  • [1] Adamowicz T, 2015, MATH SCAND, V116, P5
  • [2] Besov spaces with variable smoothness and integrability
    Almeida, Alexandre
    Hasto, Peter
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (05) : 1628 - 1655
  • [3] Cao J, 2015, J NONLINEAR CONVEX A, V16, P1205
  • [4] BOUNDEDNESS OF SECOND ORDER RIESZ TRANSFORMS ASSOCIATED TO SCHRODINGER OPERATORS ON MUSIELAK-ORLICZ-HARDY SPACES
    Cao, Jun
    Chang, Der-Chen
    Yang, Dachun
    Yang, Sibei
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (04) : 1435 - 1463
  • [5] Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators
    Cao, Jun
    Yang, Dachun
    Yang, Sibei
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01): : 99 - 114
  • [6] Variable exponent, linear growth functionals in image restoration
    Chen, Yunmei
    Levine, Stacey
    Rao, Murali
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) : 1383 - 1406
  • [7] Christ M., 1990, Colloq. Math, V60/61, P601, DOI [10.4064/cm-60-61-2-601-628, DOI 10.4064/CM-60-61-2-601-628]
  • [8] Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
  • [9] Cruz-Uribe D., 2014, Advanced Courses in Mathematics-CRM Barcelona
  • [10] Variable Hardy Spaces
    Cruz-Uribe, David
    Wang, Li-An Daniel
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (02) : 447 - 493