AN ANALOGUE TO THE A(θ)-STABILITY CONCEPT FOR IMPLICIT-EXPLICIT BDF METHODS

被引:0
作者
Akrivis, Georgios [1 ,2 ]
Katsoprinakis, Emmanouil [3 ]
机构
[1] Univ Ioannina, Dept Comp Sci & Engn, GR-45110 Ioannina, Greece
[2] FORTH, Inst Appl & Computat Math, Iraklion 70013, Crete, Greece
[3] Univ Crete, Dept Math & Appl Math, Iraklion 71003, Crete, Greece
关键词
test equation; implicit-explicit multistep methods; BDF methods; A(theta)-stability; unconditional stability; stability conditions; MULTISTEP METHODS; TIME DISCRETIZATIONS; STABILITY; APPROXIMATIONS; EQUATIONS; SCHEMES;
D O I
10.1137/19M1275103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For implicit-explicit multistep schemes, using a suitable form of Dahlquist's test equation, we introduce an analogue to the A(theta)-stability concept, valid for implicit methods, and formulate a stability criterion in terms of an auxiliary function that plays a key role in our analysis. Furthermore, for implicit-explicit backward difference formula methods, we either evaluate the auxiliary function or establish very good estimates of it; as a result, we derive a sharp or very good unconditional stability condition, respectively, the analogue of the determination of the exact angle theta for implicit methods or of a good approximation thereof. A comparison with the corresponding necessary stability condition provides evidence of the quality of the sufficient stability condition. In addition, we verify our analysis with results of a series of numerical experiments.
引用
收藏
页码:3475 / 3503
页数:29
相关论文
共 34 条
[1]   Modified implicit-explicit BDF methods for nonlinear parabolic equations [J].
Akrivis, G ;
Karakatsani, F .
BIT NUMERICAL MATHEMATICS, 2003, 43 (03) :467-483
[2]   Implicit-explicit multistep methods for quasilinear parabolic equations [J].
Akrivis, G ;
Crouzeix, M ;
Makridakis, C .
NUMERISCHE MATHEMATIK, 1999, 82 (04) :521-541
[3]  
Akrivis G, 2020, BIT, V60, P93, DOI 10.1007/s10543-019-00768-1
[4]   Stability of implicit and implicit-explicit multistep methods for nonlinear parabolic equations [J].
Akrivis, Georgios .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) :1768-1796
[5]   Maximum norm analysis of implicit-explicit backward difference formulae for nonlinear parabolic equations [J].
Akrivis, Georgios ;
Li, Buyang .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (01) :75-101
[6]   COMBINING MAXIMAL REGULARITY AND ENERGY ESTIMATES FOR TIME DISCRETIZATIONS OF QUASILINEAR PARABOLIC EQUATIONS [J].
Akrivis, Georgios ;
Li, Buyang ;
Lubich, Christian .
MATHEMATICS OF COMPUTATION, 2017, 86 (306) :1527-1552
[7]   BACKWARD DIFFERENCE FORMULAE: NEW MULTIPLIERS AND STABILITY PROPERTIES FOR PARABOLIC EQUATIONS [J].
Akrivis, Georgios ;
Katsoprinakis, Emmanuil .
MATHEMATICS OF COMPUTATION, 2016, 85 (301) :2195-2216
[8]   Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations [J].
Akrivis, Georgios ;
Lubich, Christian .
NUMERISCHE MATHEMATIK, 2015, 131 (04) :713-735
[9]   STABILITY OF IMPLICIT-EXPLICIT BACKWARD DIFFERENCE FORMULAS FOR NONLINEAR PARABOLIC EQUATIONS [J].
Akrivis, Georgios .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) :464-484
[10]  
Akrivis G, 2013, MATH COMPUT, V82, P45