Finite difference methods for elastic wave propagation in layered media

被引:1
作者
Tadi, M [1 ]
机构
[1] Univ Colorado, Dept Mech Engn, Denver, CO 80217 USA
关键词
finite difference method; layered media; elastic solid;
D O I
10.1142/S0218396X04002249
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper is concerned with the numerical modeling of elastic wave propagation in layered media. It considers two isotropic homogeneous elastic solids in perfect contact. The interface is parallel to the free surface. Two finite difference methods are developed. The usefulness of the methods are investigated for long time simulations and the accuracy of the results are compared with the response from an approximate model.
引用
收藏
页码:257 / 276
页数:20
相关论文
共 24 条
[1]  
ACHENBACH JD, 1982, RAY METHODS WAVES EL
[2]  
ALTERMAN Z, 1968, B SEISMOL SOC AM, V58, P367
[3]   NUMERICAL SOLUTION FOR 2-DIMENSIONAL ELASTIC WAVE PROPAGATION IN FINITE BARS [J].
BERTHOLF, LD .
JOURNAL OF APPLIED MECHANICS, 1967, 34 (03) :725-&
[4]  
BOND LJ, 1988, MATH MODELLING NONDE, P81
[5]   Finite-difference scheme for elastic wave propagation in a circular disk [J].
Cherukuri, HP ;
Shawki, TG .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1996, 100 (04) :2139-2155
[6]   AN EXACT LAPLACE TRANSFORM FORMULATION FOR A POINT-SOURCE ABOVE A GROUND SURFACE [J].
DI, X ;
GILBERT, KE .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1993, 93 (02) :714-720
[7]  
DUNKIN JW, 1970, B SEISMOL SOC AM, V60, P167
[8]  
Graff K. F., 1975, WAVE MOTION ELASTIC
[9]  
Hron F, 1972, METHODS COMPUTATIONA, V12, P1
[10]  
Huang Y.H., 1993, Pavement analysis and design