The multiplicative domain in quantum error correction

被引:15
作者
Choi, Man-Duen [1 ]
Johnston, Nathaniel [2 ]
Kribs, David W. [2 ,3 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CODES;
D O I
10.1088/1751-8113/42/24/245303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the multiplicative domain of a completely positive map yields a new class of quantum error correcting codes. In the case of a unital quantum channel, these are precisely the codes that do not require a measurement as part of the recovery process, the so-called unitarily correctable codes. In the arbitrary, not necessarily unital case, they form a proper subset of unitarily correctable codes that can be computed from the properties of the channel. As part of the analysis, we derive a representation theoretic characterization of subsystem codes. We also present a number of illustrative examples.
引用
收藏
页数:15
相关论文
共 33 条
[1]  
ALY SA, 2007, ARXIV07124321
[2]   Operator quantum error-correcting subsystems for self-correcting quantum memories [J].
Bacon, D .
PHYSICAL REVIEW A, 2006, 73 (01)
[3]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[4]   Generalization of quantum error correction via the Heisenberg picture [J].
Beny, Cedric ;
Kempf, Achim ;
Kribs, David W. .
PHYSICAL REVIEW LETTERS, 2007, 98 (10)
[5]   Algebraic formulation of quantum error correction [J].
Beny, Cedric ;
Kribs, David W. ;
Pasieka, Aron .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 :597-603
[6]   Characterizing the structure of preserved information in quantum processes [J].
Blume-Kohout, Robin ;
Ng, Hui Khoon ;
Poulin, David ;
Viola, Lorenza .
PHYSICAL REVIEW LETTERS, 2008, 100 (03)
[7]   Method to find quantum noiseless subsystems [J].
Choi, MD ;
Kribs, DW .
PHYSICAL REVIEW LETTERS, 2006, 96 (05)
[8]   SCHWARZ INEQUALITY FOR POSITIVE LINEAR MAPS ON C-STAR-ALGEBRAS [J].
CHOI, MD .
ILLINOIS JOURNAL OF MATHEMATICS, 1974, 18 (04) :565-574
[9]   Preserving coherence in quantum computation by pairing quantum bits [J].
Duan, LM ;
Guo, GC .
PHYSICAL REVIEW LETTERS, 1997, 79 (10) :1953-1956
[10]   Symmetrized characterization of noisy quantum processes [J].
Emerson, Joseph ;
Silva, Marcus ;
Moussa, Osama ;
Ryan, Colm ;
Laforest, Martin ;
Baugh, Jonathan ;
Cory, David G. ;
Laflamme, Raymond .
SCIENCE, 2007, 317 (5846) :1893-1896