Asymptotics of Sobolev orthogonal polynomials for symmetrically coherent pairs of measures with compact support

被引:11
作者
Marcellan, F
MartinezFinkelshtein, A
MorenoBalcazar, JJ
机构
[1] UNIV CARLOS III MADRID, DEPT MATEMAT, MADRID, SPAIN
[2] UNIV ALMERIA, DEPT ESTADIST & MATEMAT APLICADA, ALMERIA, SPAIN
[3] UNIV GRANADA, INST CARLOS I FIS TEOR & COMPUTAC, E-18071 GRANADA, SPAIN
关键词
Sobolev orthogonal polynomials; asymptotics; coherent pairs of measures; symmetrically coherent pairs of measures;
D O I
10.1016/S0377-0427(97)00057-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the strong asymptotics for the sequence of monic polynomials Q(n)(x), orthogonal with respect to the inner product (f,g)s = integral f(x)g(x)d mu(1)(x) + lambda integral f'(x)g'(x)d mu(2)(x), lambda>0, with x outside of the support of the measure mu(2). We assume that mu(1) and mu(2) are symmetric and compactly supported measures on R satisfying a coherence condition. As a consequence, the asymptotic behaviour of (Q(n),Q(n))s and of the zeros of Q(n) is obtained.
引用
收藏
页码:217 / 227
页数:11
相关论文
共 20 条
[1]  
ALFARO M, UNPUB ESTIMATES JACO
[2]  
[Anonymous], MATH SOC C PUBL
[3]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[4]  
GAUTSCHI W, ZEROS CRITICAL POINT
[5]   ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO CERTAIN SOBOLEV INNER PRODUCTS [J].
ISERLES, A ;
KOCH, PE ;
NORSETT, SP ;
SANZSERNA, JM .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :151-175
[6]   RELATIVE ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO A DISCRETE SOBOLEV INNER-PRODUCT [J].
LOPEZ, G ;
MARCELLAN, F ;
VANASSCHE, W .
CONSTRUCTIVE APPROXIMATION, 1995, 11 (01) :107-137
[7]   ORTHOGONAL POLYNOMIALS AND COHERENT PAIRS - THE CLASSICAL CASE [J].
MARCELLAN, F ;
PETRONILHO, J .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1995, 6 (03) :287-307
[8]   What is beyond coherent pairs of orthogonal polynomials? [J].
Marcellan, F ;
Petronilho, JC ;
Perez, TE ;
Pinar, MA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 65 (1-3) :267-277
[9]   RELATIVE ASYMPTOTICS FOR ORTHOGONAL POLYNOMIALS WITH A SOBOLEV INNER PRODUCT [J].
MARCELLAN, F ;
VANASSCHE, W .
JOURNAL OF APPROXIMATION THEORY, 1993, 72 (02) :193-209
[10]  
MARCELLAN F, 1994, NONLINEAR NUMERICAL, V2, P71