Susceptibility amplitude ratios in the two-dimensional Potts model and percolation

被引:20
作者
Delfino, G
Barkema, GT
Cardy, J
机构
[1] Univ Paris 06, Phys Theor & Hautes Energies Lab, F-75252 Paris 05, France
[2] Univ Utrecht, NL-3584 CC Utrecht, Netherlands
[3] Univ Oxford, Oxford OX1 3NP, England
[4] Univ Oxford All Souls Coll, Oxford OX1 4AL, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/S0550-3213(99)00629-X
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The high-temperature susceptibility of the q-state Potts model behaves as Gamma\T- T-c\(-gamma) as T --> T-c + while for T --> T-c - one may define both longitudinal and transverse susceptibilities, with the same power law but different amplitudes Gamma(L) and Gamma(T). We extend a previous analytic calculation of the universal ratio Gamma/Gamma(L) in two dimensions to the low-temperature ratio Gamma(T)/Gamma(L), and test both predictions with Monte Carlo simulations for q = 3 and 4. The data for q = 4 are inconclusive owing to large corrections to scaling, while for q = 3 they appear consistent with the prediction for Gamma(T)/Gamma(L), but not with that for Gamma/Gamma(L). A simple extrapolation of our analytic results to q --> 1 indicates a similar discrepancy with the corresponding measured quantities in percolation. We point out that stronger assumptions were made in the derivation of the ratio Gamma/Gamma(L), and our work suggests that these may be unjustified. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:521 / 534
页数:14
相关论文
共 24 条
[1]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[2]   EQUIVALENCE OF POTTS MODEL OR WHITNEY POLYNOMIAL WITH AN ICE-TYPE MODEL [J].
BAXTER, RJ ;
KELLAND, SB ;
WU, FY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (03) :397-406
[3]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[4]   UNIVERSAL PROPERTIES OF SELF-AVOIDING WALKS FROM 2-DIMENSIONAL FIELD-THEORY [J].
CARDY, J ;
MUSSARDO, G .
NUCLEAR PHYSICS B, 1993, 410 (03) :451-493
[5]   SCALING THEORY OF THE POTTS-MODEL MULTICRITICAL POINT [J].
CARDY, JL ;
NAUENBERG, M ;
SCALAPINO, DJ .
PHYSICAL REVIEW B, 1980, 22 (05) :2560-2568
[6]  
CASELLE M, CONDMAT9902146
[7]   INTEGRABLE FIELD-THEORY OF THE Q-STATE POTTS-MODEL WITH 0-LESS-THAN-Q-LESS-THAN-4 [J].
CHIM, L ;
ZAMOLODCHIKOV, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (21) :5317-5335
[8]   Asymptotic factorisation of form factors in two-dimensional quantum field theory [J].
Delfino, G ;
Simonetti, P ;
Cardy, JL .
PHYSICS LETTERS B, 1996, 387 (02) :327-333
[9]   Universal amplitude ratios in the two-dimensional Ising model [J].
Delfino, G .
PHYSICS LETTERS B, 1998, 419 (1-4) :291-295
[10]   Universal amplitude ratios in the two-dimensional q-state Potts model and percolation from quantum field theory [J].
Delfino, G ;
Cardy, JL .
NUCLEAR PHYSICS B, 1998, 519 (03) :551-578