A universal method for robust stabilization of nonlinear systems: Unification and extension of smooth and non-smooth approaches

被引:17
|
作者
Polendo, Jason [1 ]
Qian, Chunjiang [1 ]
机构
[1] Univ Texas, Dept Elect & Comp Engn, San Antonio, TX 78249 USA
来源
2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12 | 2006年 / 1-12卷
基金
美国国家科学基金会;
关键词
D O I
10.1109/ACC.2006.1657392
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The current literature on the stabilization of nonlinear systems, particularly those whose linearization about the origin may contain uncontrollable modes, essentially contains two distinct methods: a smooth controller scheme (only under strict assumptions) and a non-sinooth one. This paper introduces a more general setting under which: 1) unification of the two aforementioned schemes is achieved and 2) it is possible to find a continuously differentiable control law for some systems previously only stabilizable by a continuous controller. This new method is implicitly based on the ideas of homogeneous systems theory and the adding a power integrator technique.
引用
收藏
页码:4285 / 4290
页数:6
相关论文
共 50 条
  • [41] Synchronization and Non-Smooth Dynamical Systems
    Jaume Llibre
    Paulo R. da Silva
    Marco A. Teixeira
    Journal of Dynamics and Differential Equations, 2012, 24 : 1 - 12
  • [42] A Smooth Method for Solving Non-Smooth Unconstrained Optimization Problems
    Rahmanpour, F.
    Hosseini, M. M.
    JOURNAL OF MATHEMATICAL EXTENSION, 2016, 10 (03) : 11 - 33
  • [43] Synchronization and Non-Smooth Dynamical Systems
    Llibre, Jaume
    da Silva, Paulo R.
    Teixeira, Marco A.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2012, 24 (01) : 1 - 12
  • [44] Harmonic balance/Galerkin method for non-smooth dynamic systems
    Kim, WJ
    Perkins, NC
    JOURNAL OF SOUND AND VIBRATION, 2003, 261 (02) : 213 - 224
  • [45] The non-smooth contact dynamics method
    Jean, M
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 177 (3-4) : 235 - 257
  • [46] Piecewise nonlinear approximation for non-smooth functions
    Akansha, S.
    RESULTS IN APPLIED MATHEMATICS, 2024, 23
  • [47] Non-smooth and time-varying systems of geometrically nonlinear beams
    Barthels, Pierre
    Wauer, Joerg
    JOURNAL OF SOUND AND VIBRATION, 2008, 315 (03) : 455 - 466
  • [48] Nonlinear dynamics of non-smooth mechanical systems: Theoretical and experimental studies
    Wiercigroch, M
    Pavlovskaia, EE
    Karpenko, EV
    IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics, 2005, 122 : 323 - 332
  • [49] Numerical and experimental investigations of the nonlinear dynamics and chaos in non-smooth systems
    Savi, Marcelo Amorim
    Divenyi, Sandor
    Penna Franca, Luiz Fernando
    Weber, Hans Ingo
    JOURNAL OF SOUND AND VIBRATION, 2007, 301 (1-2) : 59 - 73
  • [50] A MODIFICATION AND AN EXTENSION OF LEMARECHAL ALGORITHM FOR NON-SMOOTH MINIMIZATION
    MIFFLIN, R
    MATHEMATICAL PROGRAMMING STUDY, 1982, 17 (APR): : 77 - 90