n-exangulated categories (I): Definitions and fundamental properties

被引:42
作者
Herschend, Martin [1 ]
Liu, Yu [2 ]
Nakaoka, Hiroyuki [3 ]
机构
[1] Uppsala Univ, Dept Math, Box 480, S-75106 Uppsala, Sweden
[2] Southwest Jiaotong Univ, Sch Math, Chengdu 610031, Sichuan, Peoples R China
[3] Nagoya Univ, Grad Sch Math, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan
基金
中国国家自然科学基金; 瑞典研究理事会;
关键词
Triangulated category; Exact category; n-angulated category; n-exact category;
D O I
10.1016/j.jalgebra.2020.11.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each positive integer n we introduce the notion of n-exangulated categories as higher dimensional analogues of extriangulated categories defined by Nakaoka-Palu. We characterize which n-exangulated categories are n-exact in the sense of Jasso and which are (n 2)-angulated in the sense of Geiss-Keller-Oppermann. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:531 / 586
页数:56
相关论文
共 21 条
[1]  
Assem I., 2006, LOND MATH SOC STUD T, V1, P65
[2]   Higher n-angulations from local rings [J].
Bergh, Petter Andreas ;
Jasso, Gustavo ;
Thaule, Marius .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 93 :123-142
[3]   The axioms for n-angulated categories [J].
Bergh, Petter Andreas ;
Thaule, Marius .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (04) :2405-2428
[4]   Exact categories and vector space categories [J].
Draxler, P ;
Reiten, I ;
Smalo, SO ;
Solberg, O ;
Keller, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (02) :647-682
[5]   Auslander-Reiten (d+2)-angles in subcategories and a (d+2)-angulated generalisation of a theorem by Bruning [J].
Fedele, Francesca .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (08) :3554-3580
[6]  
Frerick L., EXACT CATEGORIES FUN
[7]   n-angulated categories [J].
Geiss, Christof ;
Keller, Bernhard ;
Oppermann, Steffen .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 675 :101-120
[8]   Selfinjective quivers with potential and 2-representation-finite algebras [J].
Herschend, Martin ;
Iyama, Osamu .
COMPOSITIO MATHEMATICA, 2011, 147 (06) :1885-1920
[9]   n-representation-finite algebras and twisted fractionally Calabi-Yau algebras [J].
Herschend, Martin ;
Iyama, Osamu .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :449-466
[10]  
Hubery A., Notes on the Octahedral Axiom