An implicit-explicit Runge-Kutta-Chebyshev finite element method for the nonlinear Lithium-ion battery equations

被引:9
作者
Bermejo, R. [1 ]
Galan del Sastre, R. [1 ]
机构
[1] Univ Politecn Madrid, Dept Matemat Aplicada Ingn Ind, Madrid 28006, Spain
关键词
Lithium-ion battery; Implicit-explicit Runge-Kutta-Chebyshev scheme; Finite element method; MATHEMATICAL-MODEL; WELL-POSEDNESS;
D O I
10.1016/j.amc.2019.05.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a numerical method to integrate the nonlinear system of equations that model the physical-chemical laws of the Lithium-ion batteries. The mathematical model, formulated in Doyle et al. J. Electrochem. Soc. 140 (1993) 1526-1533, is a system of strongly coupled nonlinear parabolic and elliptic equations. Our numerical method combines a second order implicit-explicit Runge-Kutta-Chebyshev scheme for time discretization of the parabolic equations governing the dynamics of the variables c(e) and c(s), with linear finite element space discretization of the system. The implicit-explicit numerical formulation of the parabolic equations allows us to decouple the strong nonlinear reaction terms, which are treated implicitly, from the linear diffusion terms, treated explicitly. This approach is computationally efficient because (a) it has an extended stability region, and (b) the coupled system of algebraic equations becomes a single variable nonlinear equation per mesh point, which is easily solved by Newton method. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:398 / 420
页数:23
相关论文
共 26 条
[1]  
[Anonymous], DUALFOIL 5 1
[2]  
[Anonymous], 1970, ITERATIVE SOLUTION N, DOI DOI 10.1137/1.9780898719468
[3]   An adaptive finite element semi-Lagrangian implicit-explicit Runge-Kutta-Chebyshev method for convection dominated reaction-diffusion problems [J].
Bermejo, R. ;
Carpio, J. .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (01) :16-39
[4]   On the finite element solution of the pure Neumann problem [J].
Bochev, P ;
Lehoucq, RB .
SIAM REVIEW, 2005, 47 (01) :50-66
[5]  
DEUFLHARD P., 2004, SPR S COMP, V35
[6]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[7]   REDUCED BASIS APPROXIMATION FOR NONLINEAR PARAMETRIZED EVOLUTION EQUATIONS BASED ON EMPIRICAL OPERATOR INTERPOLATION [J].
Drohmann, Martin ;
Haasdonk, Bernard ;
Ohlberger, Mario .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02) :A937-A969
[8]   Improvement of accuracy of multi-scale models of Li-ion batteries by applying operator splitting techniques [J].
Farkas, Z. ;
Farago, I. ;
Kriston, A. ;
Pfrang, A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 310 :59-79
[9]  
Feinauer J., 2018, J COMPUT SCI, DOI [10.1016/jocs.2018.03.06, DOI 10.1016/JOCS.2018.03.06]
[10]   On the well-posedness of a multiscale mathematical model for Lithium-ion batteries [J].
Ildefonso Diaz, J. ;
Gomez-Castro, David ;
Ramos, Angel M. .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :1132-1157