Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks

被引:1018
作者
Ciresan, Dan C. [1 ]
Giusti, Alessandro [1 ]
Gambardella, Luca M. [1 ]
Schmidhuber, Juergen [1 ]
机构
[1] IDSIA, Dalle Molle Inst Artificial Intelligence, USI SUPSI, Lugano, Switzerland
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2013, PT II | 2013年 / 8150卷
关键词
RECOGNITION;
D O I
10.1007/978-3-642-40763-5_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We use deep max-pooling convolutional neural networks to detect mitosis in breast histology images. The networks are trained to classify each pixel in the images, using as context a patch centered on the pixel. Simple postprocessing is then applied to the network output. Our approach won the ICPR 2012 mitosis detection competition, outperforming other contestants by a significant margin.
引用
收藏
页码:411 / 418
页数:8
相关论文
共 20 条
[1]  
[Anonymous], P SPIE MED IMAGING
[2]  
[Anonymous], P ICPR 2012
[3]  
[Anonymous], 2010, P INT C ART NEUR NET
[4]  
[Anonymous], 2011, 22 INT JT C ART INT, DOI 10.5555/2283516.2283603
[5]  
Behnke S., 2003, LNCS, V2766, P412
[6]  
Ciresan D., 2012, ADV NEURAL INFORM PR, V25, P2843, DOI DOI 10.5555/2999325.2999452
[7]  
Ciresan D, 2012, PROC CVPR IEEE, P3642, DOI 10.1109/CVPR.2012.6248110
[8]  
Farabet C., 2013, IEEE T PATT IN PRESS
[10]   NEURAL NETWORKS AND THE BIAS VARIANCE DILEMMA [J].
GEMAN, S ;
BIENENSTOCK, E ;
DOURSAT, R .
NEURAL COMPUTATION, 1992, 4 (01) :1-58