Sparse optimization for image reconstruction in Electrical Impedance Tomography

被引:5
|
作者
Varanasi, Santhosh Kumar [1 ]
Manchikatla, Chaitanya [1 ]
Polisetty, Venkata Goutham [1 ]
Jampana, Phanindra [1 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Chem Engn, Sangareddy 502285, Telangana, India
来源
IFAC PAPERSONLINE | 2019年 / 52卷 / 01期
关键词
Parameter estimation; Electrical Resistance/Impedance Tomography; Sparse optimization; Orthogonal matching pursuit; REGULARIZATION; FLOW;
D O I
10.1016/j.ifacol.2019.06.033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electrical Impedance Tomography (EIT) can be used to obtain phase boundaries and gas holdups in multiphase flows. The main challenge in image reconstruction using EIT is the low spatial resolution. In this paper, a reconstruction algorithm using sparse optimization techniques is presented. For multiphase flows, gradients in the conductivity vector are sparse. Therefore, the reconstruction problem is formulated as identification of this sparse vector given the current-voltage measurements. A new iterative algorithm is proposed to estimate the conductivity values. The accuracy of the proposed method is demonstrated with the help of several examples and comparison with an existing technique. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:34 / 39
页数:6
相关论文
共 50 条
  • [41] A New Image Reconstruction Method for Electrical Charge Tomography System
    Rahmat, Mohd Fua'ad
    Isa, Mohd Daud
    Hussin, Tengku Ahmad B. S. Raja
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2012, 37 (06) : 1625 - 1643
  • [42] An Autoencoder-Based Image Reconstruction for Electrical Capacitance Tomography
    Zheng, Jin
    Peng, Lihui
    IEEE SENSORS JOURNAL, 2018, 18 (13) : 5464 - 5474
  • [43] Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography
    Garde, Henrik
    Staboulis, Stratos
    NUMERISCHE MATHEMATIK, 2017, 135 (04) : 1221 - 1251
  • [44] A Moving Morphable Components Based Shape Reconstruction Framework for Electrical Impedance Tomography
    Liu, Dong
    Du, Jiangfeng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (12) : 2937 - 2948
  • [45] Reconstruction of conductivity distribution with electrical impedance tomography based on hybrid regularization method
    Shi, Yanyan
    He, Xiaoyue
    Wang, Meng
    Yang, Bin
    Fu, Feng
    Kong, Xiaolong
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (03)
  • [46] Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography
    Henrik Garde
    Stratos Staboulis
    Numerische Mathematik, 2017, 135 : 1221 - 1251
  • [47] Gray Image Reconstruction Algorithm Based lp Optimization for Sparse Representation
    Liu, Haiying
    Guo, Junmei
    Xu, Fangzhou
    Deng, Lixia
    Zhang, Hui
    IEEE 2018 INTERNATIONAL CONGRESS ON CYBERMATICS / 2018 IEEE CONFERENCES ON INTERNET OF THINGS, GREEN COMPUTING AND COMMUNICATIONS, CYBER, PHYSICAL AND SOCIAL COMPUTING, SMART DATA, BLOCKCHAIN, COMPUTER AND INFORMATION TECHNOLOGY, 2018, : 1714 - 1718
  • [48] Supershape Augmented Reconstruction Method Based on Boolean Operations in Electrical Impedance Tomography
    Gu, Danping
    Deng, Jiansong
    Smyl, Danny
    Liu, Dong
    Du, Jiangfeng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [49] Incomplete angle reconstruction algorithm with the sparse optimization and the image optimal criterions
    Jiao, Shengxi
    Wen, Lu
    Guo, Haitao
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2020, 17 (03)
  • [50] THE SENSITIVITY IN ELECTRICAL IMPEDANCE TOMOGRAPHY
    Rybin, A. I.
    Gaydayenko, E. V.
    Sushko, I. O.
    Gamanenko, A. I.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2013, (55): : 107 - 117