Integers with a given number of divisors

被引:1
作者
Chen, Yong-Gao [1 ]
Mei, Shu-Yuan
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ordinary integers; Extraordinary integers; Square-free integers; Divisors;
D O I
10.1016/j.jnt.2014.02.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. For any positive integer n, let n = q(1) . . . q(s) be the prime factorization of n with q(1) >= . . . >= q(s) > 1. A positive integer n is said to be ordinary if the smallest positive integer with exactly n divisors is p(1)(q1-1) . . . p(s)(qs) (-) (1), where P-k denotes the kth prime. Let [x] be the largest integer not exceeding x. In 2006, Brown proved that all square-free integers are ordinary and the set of all ordinary integers has asymptotic density one. In this paper, we prove that, if q([root s]) >= 9(log s)(2), then n is ordinary. Furthermore, the set of such integers n has asymptotic density one. We also determine all ordinary integers which are not divisible by any fifth power of a prime. Video. For a video summary of this paper, please visit http://youtu.be/UeIMWjRFUnA. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 124
页数:16
相关论文
共 50 条
[41]   An algebraic proof of the commutativity of intersection with divisors [J].
Roberts, Paul ;
Spiroff, Sandra .
JOURNAL OF ALGEBRA, 2008, 320 (05) :2165-2180
[42]   Coprime divisors graphs and their coloring parameters [J].
Jorf, Mohamed ;
Boudine, Brahim ;
Oukhtite, Lahcen .
DISCRETE MATHEMATICS LETTERS, 2024, 13 :128-134
[43]   Sumsets avoiding squarefree integers [J].
Schlage-Puchta, Jan-Christoph .
ACTA ARITHMETICA, 2010, 143 (01) :51-57
[44]   GAPS BETWEEN CONSECUTIVE DIVISORS OF FACTORIALS [J].
BEREND, D ;
HARMSE, JE .
ANNALES DE L INSTITUT FOURIER, 1993, 43 (03) :569-583
[45]   STATISTICS OF PRIME DIVISORS IN FUNCTION FIELDS [J].
Rhoades, Robert C. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (01) :141-152
[46]   Integers with large practical component [J].
Weingartner, Andreas .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 87 (3-4) :439-447
[47]   Multiplicative properties of sets of positive integers [J].
L. Hajdu ;
A. Schinzel ;
M. Skałba .
Archiv der Mathematik, 2009, 93 :269-276
[48]   Moduli of simple holomorphic pairs and effective divisors [J].
Siegmund Kosarew ;
Paul Lupascu .
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2000, 70 :265-274
[49]   On the distribution of squarefree integers in arithmetic progressions [J].
Pierre Le Boudec .
Mathematische Zeitschrift, 2018, 290 :421-429
[50]   Grimm's Conjecture on consecutive integers [J].
Laishram, Shanta ;
Shorey, T. N. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2006, 2 (02) :207-211