Integers with a given number of divisors

被引:1
作者
Chen, Yong-Gao [1 ]
Mei, Shu-Yuan
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ordinary integers; Extraordinary integers; Square-free integers; Divisors;
D O I
10.1016/j.jnt.2014.02.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. For any positive integer n, let n = q(1) . . . q(s) be the prime factorization of n with q(1) >= . . . >= q(s) > 1. A positive integer n is said to be ordinary if the smallest positive integer with exactly n divisors is p(1)(q1-1) . . . p(s)(qs) (-) (1), where P-k denotes the kth prime. Let [x] be the largest integer not exceeding x. In 2006, Brown proved that all square-free integers are ordinary and the set of all ordinary integers has asymptotic density one. In this paper, we prove that, if q([root s]) >= 9(log s)(2), then n is ordinary. Furthermore, the set of such integers n has asymptotic density one. We also determine all ordinary integers which are not divisible by any fifth power of a prime. Video. For a video summary of this paper, please visit http://youtu.be/UeIMWjRFUnA. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 124
页数:16
相关论文
共 50 条
  • [31] Divisors in global analytic sets
    Acquistapace, F.
    Diaz-Cano, A.
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (02) : 297 - 307
  • [32] Small divisors of Bernoulli sums
    Weber, Michel
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2007, 18 (02): : 281 - 293
  • [33] Divisors, measures and critical functions
    Petracovici, B.
    Petracovici, L.
    Zaharescu, A.
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (03): : 351 - 368
  • [34] Compact integers and factorials
    Shevelev, Vladimir
    [J]. ACTA ARITHMETICA, 2007, 126 (03) : 195 - 236
  • [35] Divisors and specializations of Lucas polynomials
    Amdeberhan, Tewodros
    Can, Mahir Bilen
    Jensen, Melanie
    [J]. JOURNAL OF COMBINATORICS, 2015, 6 (1-2) : 69 - 89
  • [36] Divisors, measures and critical functions
    B. Petracovici
    L. Petracovici
    A. Zaharescu
    [J]. Proceedings - Mathematical Sciences, 2009, 119 : 351 - 368
  • [37] ON THE ARITHMETIC PROCESSES RELATED TO DIVISORS
    de la Breteche, R.
    Tenenbaum, G.
    [J]. ADVANCES IN APPLIED PROBABILITY, 2016, 48 (0A) : 63 - 76
  • [38] On the average distribution of divisors of friable numbers
    Drappeau, Sary
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (01) : 153 - 193
  • [39] Integers represented by Lucas sequences
    Hajdu, Lajos
    Tijdeman, Rob
    [J]. RAMANUJAN JOURNAL, 2025, 66 (04)
  • [40] From sums of divisors to partition congruences
    Merca, Mircea
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (03)