Integers with a given number of divisors

被引:1
作者
Chen, Yong-Gao [1 ]
Mei, Shu-Yuan
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ordinary integers; Extraordinary integers; Square-free integers; Divisors;
D O I
10.1016/j.jnt.2014.02.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. For any positive integer n, let n = q(1) . . . q(s) be the prime factorization of n with q(1) >= . . . >= q(s) > 1. A positive integer n is said to be ordinary if the smallest positive integer with exactly n divisors is p(1)(q1-1) . . . p(s)(qs) (-) (1), where P-k denotes the kth prime. Let [x] be the largest integer not exceeding x. In 2006, Brown proved that all square-free integers are ordinary and the set of all ordinary integers has asymptotic density one. In this paper, we prove that, if q([root s]) >= 9(log s)(2), then n is ordinary. Furthermore, the set of such integers n has asymptotic density one. We also determine all ordinary integers which are not divisible by any fifth power of a prime. Video. For a video summary of this paper, please visit http://youtu.be/UeIMWjRFUnA. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 124
页数:16
相关论文
共 50 条
[31]   Compact integers and factorials [J].
Shevelev, Vladimir .
ACTA ARITHMETICA, 2007, 126 (03) :195-236
[32]   Small divisors of Bernoulli sums [J].
Weber, Michel .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2007, 18 (02) :281-293
[33]   Divisors in global analytic sets [J].
Acquistapace, F. ;
Diaz-Cano, A. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (02) :297-307
[34]   Divisors, measures and critical functions [J].
Petracovici, B. ;
Petracovici, L. ;
Zaharescu, A. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (03) :351-368
[35]   Divisors and specializations of Lucas polynomials [J].
Amdeberhan, Tewodros ;
Can, Mahir Bilen ;
Jensen, Melanie .
JOURNAL OF COMBINATORICS, 2015, 6 (1-2) :69-89
[36]   Divisors, measures and critical functions [J].
B. Petracovici ;
L. Petracovici ;
A. Zaharescu .
Proceedings - Mathematical Sciences, 2009, 119 :351-368
[37]   ON THE ARITHMETIC PROCESSES RELATED TO DIVISORS [J].
de la Breteche, R. ;
Tenenbaum, G. .
ADVANCES IN APPLIED PROBABILITY, 2016, 48 (0A) :63-76
[38]   On the average distribution of divisors of friable numbers [J].
Drappeau, Sary .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (01) :153-193
[39]   From sums of divisors to partition congruences [J].
Merca, Mircea .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (03)
[40]   Integers represented by Lucas sequences [J].
Hajdu, Lajos ;
Tijdeman, Rob .
RAMANUJAN JOURNAL, 2025, 66 (04)