Integers with a given number of divisors

被引:1
作者
Chen, Yong-Gao [1 ]
Mei, Shu-Yuan
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ordinary integers; Extraordinary integers; Square-free integers; Divisors;
D O I
10.1016/j.jnt.2014.02.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. For any positive integer n, let n = q(1) . . . q(s) be the prime factorization of n with q(1) >= . . . >= q(s) > 1. A positive integer n is said to be ordinary if the smallest positive integer with exactly n divisors is p(1)(q1-1) . . . p(s)(qs) (-) (1), where P-k denotes the kth prime. Let [x] be the largest integer not exceeding x. In 2006, Brown proved that all square-free integers are ordinary and the set of all ordinary integers has asymptotic density one. In this paper, we prove that, if q([root s]) >= 9(log s)(2), then n is ordinary. Furthermore, the set of such integers n has asymptotic density one. We also determine all ordinary integers which are not divisible by any fifth power of a prime. Video. For a video summary of this paper, please visit http://youtu.be/UeIMWjRFUnA. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 124
页数:16
相关论文
共 50 条
  • [21] On rationalizing divisors
    Lorenzo Prelli
    Periodica Mathematica Hungarica, 2017, 75 : 210 - 220
  • [22] Plane Partitions and Divisors
    Ballantine, Cristina
    Merca, Mircea
    SYMMETRY-BASEL, 2024, 16 (01):
  • [23] Divisors of shifted primes
    Indlekofer, KH
    Timofeev, NM
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2002, 60 (3-4): : 307 - 345
  • [24] Fibonacci integers
    Luca, Florian
    Pomerance, Carl
    Wagner, Stephan
    JOURNAL OF NUMBER THEORY, 2011, 131 (03) : 440 - 457
  • [25] On the sums of complementary divisors
    Becheanu, Mircea
    Luca, Florian
    Shparlinski, Igor E.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (04) : 635 - 648
  • [26] Divisors of Bernoulli Sums
    Michel Weber
    Results in Mathematics, 2007, 51 : 141 - 179
  • [27] Divisors of Bernoulli Sums
    Michel Weber
    Results in Mathematics, 2009, 53 : 197 - 200
  • [28] Divisors of Bernoulli sums
    Weber, Michel
    RESULTS IN MATHEMATICS, 2007, 51 (1-2) : 141 - 179
  • [29] SEQUENCES RELATED TO THE SUM OF DIVISORS
    Stevanovic, Milorad R.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2005, 27 : 47 - 54
  • [30] Divisors of the Euler and Carmichael functions
    Ford, Kevin
    Hu, Yong
    ACTA ARITHMETICA, 2008, 133 (03) : 199 - 208