Integers with a given number of divisors

被引:1
作者
Chen, Yong-Gao [1 ]
Mei, Shu-Yuan
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ordinary integers; Extraordinary integers; Square-free integers; Divisors;
D O I
10.1016/j.jnt.2014.02.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. For any positive integer n, let n = q(1) . . . q(s) be the prime factorization of n with q(1) >= . . . >= q(s) > 1. A positive integer n is said to be ordinary if the smallest positive integer with exactly n divisors is p(1)(q1-1) . . . p(s)(qs) (-) (1), where P-k denotes the kth prime. Let [x] be the largest integer not exceeding x. In 2006, Brown proved that all square-free integers are ordinary and the set of all ordinary integers has asymptotic density one. In this paper, we prove that, if q([root s]) >= 9(log s)(2), then n is ordinary. Furthermore, the set of such integers n has asymptotic density one. We also determine all ordinary integers which are not divisible by any fifth power of a prime. Video. For a video summary of this paper, please visit http://youtu.be/UeIMWjRFUnA. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 124
页数:16
相关论文
共 50 条
  • [1] On consecutive integers divisible by the number of their divisors
    Andreescu, Titu
    Luca, Florian
    Phaovibul, M. Tip
    ACTA ARITHMETICA, 2016, 173 (03) : 269 - 281
  • [2] On the density of integers with consecutive divisors
    Gyarmati, Katalin
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2009, 74 (1-2): : 1 - 17
  • [3] ON THE DISTRIBUTION OF INTEGERS WITH DIVISORS IN TWO CONSECUTIVE INTERVALS
    Hu, Yong
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (04) : 903 - 915
  • [4] ROUGH INTEGERS WITH A DIVISOR IN A GIVEN INTERVAL
    Ford, Kevin
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 111 (01) : 17 - 36
  • [5] Additive evaluations of the number of divisors
    Merca, Mircea
    RAMANUJAN JOURNAL, 2024, 63 (03) : 583 - 601
  • [6] Additive evaluations of the number of divisors
    Mircea Merca
    The Ramanujan Journal, 2024, 63 : 583 - 601
  • [7] New convolutions for the number of divisors
    Ballantine, Cristina
    Merca, Mircea
    JOURNAL OF NUMBER THEORY, 2017, 170 : 17 - 34
  • [8] On the average number of divisors of the Euler function
    Luca, Florian
    Pomerance, Carl
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2007, 70 (1-2): : 125 - 148
  • [9] On the number of divisors which are values of a polynomial
    Gyarmati, Katalin
    RAMANUJAN JOURNAL, 2008, 17 (03) : 387 - 403
  • [10] ON THE NUMBER OF DIVISORS OF n! AND OF THE FIBONACCI NUMBERS
    Luca, Florian
    Young, Paul Thomas
    GLASNIK MATEMATICKI, 2012, 47 (02) : 285 - 293