Integers with a given number of divisors

被引:1
作者
Chen, Yong-Gao [1 ]
Mei, Shu-Yuan
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ordinary integers; Extraordinary integers; Square-free integers; Divisors;
D O I
10.1016/j.jnt.2014.02.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. For any positive integer n, let n = q(1) . . . q(s) be the prime factorization of n with q(1) >= . . . >= q(s) > 1. A positive integer n is said to be ordinary if the smallest positive integer with exactly n divisors is p(1)(q1-1) . . . p(s)(qs) (-) (1), where P-k denotes the kth prime. Let [x] be the largest integer not exceeding x. In 2006, Brown proved that all square-free integers are ordinary and the set of all ordinary integers has asymptotic density one. In this paper, we prove that, if q([root s]) >= 9(log s)(2), then n is ordinary. Furthermore, the set of such integers n has asymptotic density one. We also determine all ordinary integers which are not divisible by any fifth power of a prime. Video. For a video summary of this paper, please visit http://youtu.be/UeIMWjRFUnA. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 124
页数:16
相关论文
共 6 条
[1]   The minimal number with a given number of divisors [J].
Brown, R .
JOURNAL OF NUMBER THEORY, 2006, 116 (01) :150-158
[2]   The kth prime is greater than k(lnk+lnlnk-1) for k≥2 [J].
Dusart, P .
MATHEMATICS OF COMPUTATION, 1999, 68 (225) :411-415
[3]   SMALLEST NUMBER WITH A GIVEN NUMBER OF DIVISORS [J].
GROST, ME .
AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (07) :725-&
[4]  
HARDY G.H., 2008, An introduction to the theory of numbers, V6th
[5]   A new class of ordinary integers [J].
Mei, Shu-Yuan .
JOURNAL OF NUMBER THEORY, 2013, 133 (10) :3559-3564
[6]  
Rosser B, 1938, P LOND MATH SOC, V45, P21