Finite groups with permuted strongly generalized maximal subgroups

被引:0
作者
Gorbatova, Yulia, V [1 ]
机构
[1] Russian Presidential Acad Natl Econ & Publ Adm, Bryansk Branch, Social Humanitarian & Nat Sci Disciplines Dept, Bryansk, Russia
来源
VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS | 2022年 / 80期
关键词
solvable group; i-maximal subgroup; strongly i-maximal subgroup; normal subgroup; nilpotent group; supersolvable group; Schmidt group; NONNILPOTENT GROUPS;
D O I
10.17223/19988621/80/3
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Let G be a finite group. If there is a maximal subgroup M in G such that H <= Mand H is a maximal subgroup of M, then H is called the 2-maximal subgroup of G. The 3-maximal subgroups can be defined similarly. Note that the n-maximal subgroup of the group G is called strongly the n-maximal if it is not the n-maximal subgroup in any proper subgroup of the group G. This paper is devoted to describing the structure of the groups in which any strongly 2-maximal subgroup is permutable with the arbitrary strongly 3-maximal subgroup. The class of groups with this property is proved to coincide with the class of groups in which any 2- maximal subgroup is permuted with the arbitrary 3-maximal subgroup, and, as a consequence, such groups are solvable. As an auxiliary result, this work presents a description of groups in which any strongly 2-maximal subgroup is permutable with an arbitrary maximal subgroup. The class of such groups is shown to coincide with the class of the groups in which any 2-maximal subgroup is permutable with all maximal subgroups and, as a consequence, such groups are supersolvable.
引用
收藏
页码:26 / 38
页数:13
相关论文
共 9 条
  • [1] Doerk K., 1992, DEGRUYTER EXPOSITION, V4, DOI [DOI 10.1515/9783110870138, 10.1515/9783110870138]
  • [2] [Горбатова Юлия Владимировна Gorbatova Yuliya V.], 2021, [Вестник российских университетов. Математика, Russian Universities Reports. Mathematics, Vestnik rossijskih universitetov. Matematika], V26, P121, DOI 10.20310/2686-9667-2021-26-134-121-129
  • [3] On nonnilpotent groups in which every two 3-maximal subgroups are permutable
    Guo, W.
    Lutsenko, Yu. V.
    Skiba, A. N.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2009, 50 (06) : 988 - 997
  • [4] [Го Веньбинь Guo Wenbin], 2009, [Математические заметки, Mathematical Notes, Matematicheskie zametki], V86, P350, DOI 10.4213/mzm8499
  • [5] THE STRUCTURE OF FINITE NON-NILPOTENT GROUPS IN WHICH EVERY 2-MAXIMAL SUBGROUP PERMUTES WITH ALL 3-MAXIMAL SUBGROUPS
    Guo, Wenbin
    Legchekova, Helena V.
    Skiba, Alexander N.
    [J]. COMMUNICATIONS IN ALGEBRA, 2009, 37 (07) : 2446 - 2456
  • [6] Huppert B., 1967, ENDLICHE GRUPPEN
  • [7] Lutsenko Yu.V, 2009, IZVESTIYA GOMELSKOGO, V52, P134
  • [8] Monakhov V.S, 2006, VVEDENIYE TEORIYU KO
  • [9] Shemetkov L.A., 1978, Formations of finite groups