Vorticity field, helicity integral and persistence of entanglement in reaction-diffusion systems

被引:2
作者
Trueba, J. L. [1 ]
Arrayas, M. [1 ]
机构
[1] Univ Rey Juan Carlos, Area Electromagnetismo, Madrid 28943, Spain
关键词
EQUATIONS; WAVES;
D O I
10.1088/1751-8113/42/28/282001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that a global description of the stability of entangled structures in reaction-diffusion systems can be made by means of a helicity integral. A vorticity vector field is defined for these systems, as in electromagnetism or fluid dynamics. We have found under which conditions the helicity is conserved or lost through the boundaries of the medium, so the entanglement of structures observed is preserved or disappears during time evolution. We illustrate the theory with an example of knotted entanglement in a FitzHugh-Nagumomodel. For this model, we introduce new non-trivial initial conditions using the Hopf fibration and follow the time evolution of the entanglement.
引用
收藏
页数:6
相关论文
共 22 条
[1]   Pattern formation and competition in nonlinear optics [J].
Arecchi, FT ;
Boccaletti, S ;
Ramazza, P .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1999, 318 (1-2) :1-83
[2]   Knotting and unknotting of phase singularities: Helmholtz waves, paraxial waves and waves in 2+1 spacetime [J].
Berry, MV ;
Dennis, MR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42) :8877-8888
[3]   TENSION OF ORGANIZING FILAMENTS OF SCROLL WAVES [J].
BIKTASHEV, VN ;
HOLDEN, AV ;
ZHANG, H .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1994, 347 (1685) :611-630
[4]  
Ginzburg V.L., 1950, Zh. Eksp. Teor. Fiz., V20, P1064, DOI [10.1016/b978-0-08-010586-4.50035-3, DOI 10.1142/S0217979210055378]
[5]  
GRAY RA, 1995, SCIENCE, V270, P1222, DOI 10.1126/science.270.5239.1222
[6]   Amplitude equations for description of chemical reaction-diffusion systems [J].
Ipsen, M ;
Kramer, L ;
Sorensen, PG .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 337 (1-2) :193-235
[7]   Linked and knotted beams of light [J].
Irvine, William T. M. ;
Bouwmeester, Dirk .
NATURE PHYSICS, 2008, 4 (09) :716-720
[8]   THE DYNAMICS OF 3-DIMENSIONAL SCROLL WAVES IN EXCITABLE MEDIA [J].
KEENER, JP .
PHYSICA D, 1988, 31 (02) :269-276
[9]  
Lorensen W.E., 1987, Computer Graphics, V21, P163, DOI [DOI 10.1145/37402.37422, DOI 10.1145/37401.37422]
[10]   DEGREE OF KNOTTEDNESS OF TANGLED VORTEX LINES [J].
MOFFATT, HK .
JOURNAL OF FLUID MECHANICS, 1969, 35 :117-+