Global Well-Posedness and Time-Decay Estimates of the Compressible Navier-Stokes-Korteweg System in Critical Besov Spaces

被引:22
作者
Chikami, Noboru [1 ]
Kobayashi, Takayuki [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama Cho, Toyonaka, Osaka 5608531, Japan
关键词
Compressible Navier-Stokes-Korteweg system; Besov space; well-posedness; time-decay; EXISTENCE; STABILITY;
D O I
10.1007/s00021-019-0431-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the compressible Navier-Stokes-Korteweg system describing the dynamics of a liquid-vapor mixture with diffuse interphase. The global solutions are established under linear stability conditions in critical Besov spaces. In particular, the sound speed may be greater than or equal to zero. By fully exploiting the parabolic property of the linearized system for all frequencies, we see that there is no loss of derivative usually induced by the pressure for the standard isentropic compressible Navier-Stokes system. This enables us to apply Banach's fixed point theorem to show the existence of global solution. Furthermore, we obtain the optimal decay rates of the global solutions in the L2(Rd)-framework.
引用
收藏
页数:32
相关论文
共 22 条