Vortex-lattice formation in a spin-orbit coupled rotating spin-1 condensate

被引:9
作者
Adhikari, S. K. [1 ]
机构
[1] Univ Estadual Paulista UNESP, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
vortex lattice; spinor Bose– Einstein condensate; rotating superfluid dynamics; spin– orbit coupling; BOSE-EINSTEIN CONDENSATION; PHASE; CIRCULATION; STATE;
D O I
10.1088/1361-648X/abc5d7
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the vortex-lattice formation in a rotating Rashba spin-orbit (SO) coupled quasi-two-dimensional (quasi-2D) hyper-fine spin-1 spinor Bose-Einstein condensate (BEC) in the x-y plane using a numerical solution of the underlying mean-field Gross-Pitaevskii equation. In this case, the non-rotating Rashba SO-coupled spinor BEC can have topological excitation in the form of vortices of different angular momenta in the three components, e.g. the (0, +1, +2)- and (-1, 0, +1)-type states in ferromagnetic and anti-ferromagnetic spinor BEC: the numbers in the parenthesis denote the intrinsic angular momentum of the vortex states of the three components with the negative sign denoting an anti-vortex. The presence of these states with intrinsic vorticity breaks the symmetry between rotation with vorticity along the z and -z axes and thus generates a rich variety of vortex-lattice and anti-vortex-lattice states in a rotating quasi-2D spin-1 spinor ferromagnetic and anti-ferromagnetic BEC, not possible in a scalar BEC. For weak SO coupling, we find two types of symmetries of these states - hexagonal and 'square'. The hexagonal (square) symmetry state has vortices arranged in closed concentric orbits with a maximum of 6, 12, 18 horizontal ellipsis (8, 12, 16 horizontal ellipsis ) vortices in successive orbits. Of these two symmetries, the square vortex-lattice state is found to have the smaller energy.
引用
收藏
页数:14
相关论文
共 59 条
[1]   Formation and decay of vortex lattices in Bose-Einstein condensates at finite temperatures [J].
Abo-Shaeer, JR ;
Raman, C ;
Ketterle, W .
PHYSICAL REVIEW LETTERS, 2002, 88 (07) :4
[2]  
Abrikosov A. A., 1957, Sov. Phys. J. High Energy Phys., V32, P1442
[3]  
ABRIKOSOV AA, 1957, SOV PHYS JETP-USSR, V5, P1174
[4]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[5]   PHASE SLIPPAGE WITHOUT VORTEX CORES - VORTEX TEXTURES IN SUPERFLUID HE-3 [J].
ANDERSON, PW ;
TOULOUSE, G .
PHYSICAL REVIEW LETTERS, 1977, 38 (09) :508-511
[6]  
[Anonymous], 2016, Phys. Rev. Lett., DOI DOI 10.1103/PHYSREVLETT.117.185301
[7]  
[Anonymous], 1955, Progress in low temperature physics, DOI DOI 10.1016/S0079-6417(08)60077-3
[8]  
[Anonymous], 1949, NUOVO CIM SUPPL
[9]  
[Anonymous], 1960, Mechanics
[10]   Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow [J].
Bao, Weizhu ;
Lim, Fong Yin .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (04) :1925-1948