A class of multivariate skew-normal models

被引:39
作者
Gupta, AK [1 ]
Chen, JT [1 ]
机构
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
关键词
moment generating function; skewness; stochastic representation; quadratic form; multivariate normal distribution; Helmert matrix;
D O I
10.1007/BF02530547
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The existing model for multivariate skew normal data does not cohere with the joint distribution of a random sample from a univariate skew normal distribution. This incoherence causes awkward interpretation for data analysis in practice, especially in the development of the sampling distribution theory. In this paper, we propose a refined model that is coherent with the joint distribution of the univariate skew :normal random sample, for multivariate skew normal data. The proposed model extends and strengthens the multivariate skew model described in Azzalini (1985, Scandinavian Journal of Statistics, 12, 171-178). We present a stochastic representation for the newly proposed model, and discuss a bivariate setting, which confirms that the newly proposed model is more plausible than the one given by Azzalini and Dalla Valle (1996, Biometrika, 83, 715-726).
引用
收藏
页码:305 / 315
页数:11
相关论文
共 10 条
[1]  
Aigner D., 1977, Journal of Econometrics, V6, P21, DOI [10.1016/0304-4076(77)90052-5, DOI 10.1016/0304-4076(77)90052-5]
[2]   Statistical applications of the multivariate skew normal distribution [J].
Azzalini, A ;
Capitanio, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 :579-602
[3]   The multivariate skew-normal distribution [J].
Azzalini, A ;
DallaValle, A .
BIOMETRIKA, 1996, 83 (04) :715-726
[4]  
AZZALINI A, 1985, SCAND J STAT, V12, P171
[5]   Moments of skew-normal random vectors and their quadratic forms [J].
Genton, MG ;
He, L ;
Liu, XW .
STATISTICS & PROBABILITY LETTERS, 2001, 51 (04) :319-325
[6]  
Gupta A. K., 2002, RANDOM OPERATORS STO, V10, P133, DOI DOI 10.1515/ROSE.2002.10.2.133
[7]   On the sample characterization criterion for normal distributions [J].
Gupta, AK ;
Chen, TH .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2003, 73 (03) :155-163
[8]  
Gupta AK, 2001, COMMUN STAT-SIMUL C, V30, P907
[9]   A CORRELATION MODEL USEFUL IN STUDY OF TWINS [J].
ROBERTS, C .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1966, 61 (316) :1184-&
[10]  
Zack S., 1981, PARAMETRIC STAT INFE