Solvability of any group with Hall supplements to normalizers of Sylow subgroups

被引:0
作者
Monakhov, V. S. [1 ]
Borodich, T. V. [1 ]
机构
[1] Gomel State Univ, Gomel, BELARUS
关键词
finite group; Sylow subgroup; Hall supplement; normalizer; solvable group; nilpotent group; simple group; hereditary formation of groups; FINITE-GROUPS; FACTORIZATIONS; PRODUCT;
D O I
10.1134/S0001434609010246
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The solvability of any finite group with Hall supplements to normalizers of the Sylow subgroups is established.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 50 条
[21]   Subgroups of the Fan of Sylow Subgroups and the Supersolvability of a Finite Group [J].
Vasilyeva, T. I. .
MATHEMATICAL NOTES, 2021, 110 (1-2) :186-195
[22]   ON σ-SUBNORMALITY OF SYLOW SUBGROUPS IN A FINITE GROUP [J].
Kamornikov, S. F. ;
Tyutyanov, V. N. ;
Shemetkova, O. L. .
SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (02) :230-238
[23]   On the group with the same orders of Sylow normalizers as the finite projective special unitary group [J].
Bi, JX .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (06) :801-811
[24]   Sylow numbers and nilpotent Hall subgroups [J].
Moreto, Alexander .
JOURNAL OF ALGEBRA, 2013, 379 :80-84
[25]   Finite groups in which the normalizers of Sylow 3-subgroups are of odd or primary index [J].
A. S. Kondrat’ev ;
W. Guo .
Siberian Mathematical Journal, 2009, 50 :272-276
[26]   On the group with the same orders of Sylow normalizers as the finite projective special unitary group [J].
Jianxing Bi .
Science in China Series A: Mathematics, 2004, 47 :801-811
[27]   Finite groups in which the normalizers of Sylow 3-subgroups are of odd or primary index [J].
Kondrat'ev, A. S. ;
Guo, W. .
SIBERIAN MATHEMATICAL JOURNAL, 2009, 50 (02) :272-276
[28]   On the solvability of a group with permutable subgroups [J].
V. S. Monakhov .
Mathematical Notes, 2013, 93 :460-464
[29]   On the solvability of a group with permutable subgroups [J].
Monakhov, V. S. .
MATHEMATICAL NOTES, 2013, 93 (3-4) :460-464
[30]   The average number of Sylow subgroups of a finite group [J].
Moreto, Alexander .
MATHEMATISCHE NACHRICHTEN, 2014, 287 (10) :1183-1185