Reflected backward stochastic differential equations in an orthant

被引:16
|
作者
Ramasubramanian, S [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, Bangalore 560059, Karnataka, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2002年 / 112卷 / 02期
关键词
backward SDE's; Skorokhod problem; oblique reflection; spectral radius; total variation; local time; contraction map; subsidy-surplus model;
D O I
10.1007/BF02829759
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider RBSDE in an orthant with oblique reflection and with time and space dependent coefficients, viz. Z(t) = xi + integral(t)(T) b(s, Z(s))ds + integral(t)(T) R(s, Z(s)) dY(s) - integral(t)(T) <U(s), dB(s)> with Z(i) (.) greater than or equal to0, Y-i (.) nondecreasing and Y-i (.) increasing only when Z(i)(.) = 0, 1 less than or equal to i less than or equal to d. Existence of a unique solution is established under Lipschitz continuity of b, R and a uniform spectral radius condition on R. On the way we also prove a result concerning the variational distance between the 'pushing parts' of solutions of auxiliary one-dimensional problem.
引用
收藏
页码:347 / 360
页数:14
相关论文
共 50 条
  • [1] Reflected backward stochastic differential equations in an orthant
    S. Ramasubramanian
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2002, 112 : 347 - 360
  • [2] REFLECTED BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH RESISTANCE
    Qian, Zhongmin
    Xu, Mingyu
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (02): : 888 - 911
  • [3] REFLECTED BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH PERTURBATIONS
    Djordjevic, Jasmina
    Jankovic, Svetlana
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (04) : 1833 - 1848
  • [4] Obliquely reflected backward stochastic differential equations
    Chassagneux, Jean-Francois
    Richou, Adrien
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (04): : 2868 - 2896
  • [5] On discretely reflected backward stochastic differential equations
    Ventura, Wilber Alexander
    Korzeniowski, Andrzej
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2016, 34 (01) : 1 - 23
  • [6] Generalized reflected backward stochastic differential equations
    Janczak, K.
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2009, 81 (02) : 147 - 170
  • [7] SWITCHING GAME OF BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND ASSOCIATED SYSTEM OF OBLIQUELY REFLECTED BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
    Hu, Ying
    Tang, Shanjian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (11) : 5447 - 5465
  • [8] General Mean Reflected Backward Stochastic Differential Equations
    Ying Hu
    Remi Moreau
    Falei Wang
    Journal of Theoretical Probability, 2024, 37 : 877 - 904
  • [9] Numerical Method for Reflected Backward Stochastic Differential Equations
    Martinez, Miguel
    San Martin, Jaime
    Torres, Soledad
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2011, 29 (06) : 1008 - 1032
  • [10] Dynkin game and Reflected Backward Stochastic Differential Equations
    Ynag Bing
    Meng Lina
    Yang Yanrong
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 1233 - +