Gradient bounds for anisotropic partial differential equations

被引:18
作者
Farina, Alberto [1 ]
Valdinoci, Enrico [2 ]
机构
[1] Univ Picardie Jules Verne, Fac Sci, LAMFA, CNRS UMR 6140, F-80039 Amiens 1, France
[2] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
UNBOUNDED-DOMAINS; REGULARITY;
D O I
10.1007/s00526-013-0605-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider solutions in the whole of the space of a partial differential equation driven by the anisotropic Laplacian. We prove a pointwise energy bound and we derive from that some rigidity results.
引用
收藏
页码:923 / 936
页数:14
相关论文
共 17 条
[1]   Convex symmetrization and applications [J].
Alvino, A ;
Ferone, V ;
Trombetti, G ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :275-293
[2]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[3]  
[Anonymous], 1981, MATH SCI ENG
[4]   A GRADIENT BOUND FOR ENTIRE SOLUTIONS OF QUASI-LINEAR EQUATIONS AND ITS CONSEQUENCES [J].
CAFFARELLI, L ;
GAROFALO, N ;
SEGALA, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (11) :1457-1473
[5]   A POINTWISE GRADIENT ESTIMATE FOR SOLUTIONS OF SINGULAR AND DEGENERATE PDE'S IN POSSIBLY UNBOUNDED DOMAINS WITH NONNEGATIVE MEAN CURVATURE [J].
Castellaneta, Diego ;
Farina, Alberto ;
Valdinoci, Enrico .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (05) :1983-2003
[6]   Overdetermined anisotropic elliptic problems [J].
Cianchi, Andrea ;
Salani, Paolo .
MATHEMATISCHE ANNALEN, 2009, 345 (04) :859-881
[7]   Properties of entire solutions of non-uniformly elliptic equations arising in geometry and in phase transitions [J].
Danielli, D ;
Garofalo, N .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 15 (04) :451-491
[9]  
Dobrushin R., 1992, TRANSLATIONS MATH MO, V104
[10]   A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature [J].
Farina, Alberto ;
Valdinoci, Enrico .
ADVANCES IN MATHEMATICS, 2010, 225 (05) :2808-2827