Non-Local Reconfigurable Sparse Metasurface: Efficient Near-Field and Far-Field Wavefront Manipulations

被引:62
作者
Popov, Vladislav [1 ]
Ratni, Badreddine [2 ]
Burokur, Shah Nawaz [2 ]
Boust, Fabrice [1 ,3 ]
机构
[1] Univ Paris Saclay, SONDRA, Cent Supelec, F-91190 Gif Sur Yvette, France
[2] Univ Paris Nanterre, LEME, UPL, F-92410 Ville Davray, France
[3] Univ Paris Saclay, DEMR, ONERA, F-91123 Palaiseau, France
关键词
far-field beam-forming; microwaves; near-field focusing; reconfigurability; sparse metasurface; HUYGENS METASURFACES; DESIGN;
D O I
10.1002/adom.202001316
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, metasurfaces have shown extremely powerful abilities for manipulation of electromagnetic waves. However, the local electromagnetic response of conventional metasurfaces yields an intrinsic performance limitation in terms of efficiency, minimizing their implementation in real-life applications. The efficiency of reconfigurable metasurfaces further decreases because of the high density of meta-atoms, reaching 74 meta-atoms per lambda(2) area, incorporating lossy tunable elements. To address these problems, strong electromagnetic non-local features are implemented in a sparse metasurface composed of electronically reconfigurable meta-atoms. As a proof-of-concept demonstration, a dynamic sparse metasurface having as few as 8 meta-atoms per lambda(2) area is experimentally realized in the microwave domain to control 2D wavefronts in both near-field and far-field regions for focusing and beam-forming, respectively. The proposed metasurface with its sparsity not only facilitates design and fabrication, but also opens the door to high-efficiency real-time reprogrammable functionalities in beam manipulations, wireless power transfer, and imaging holography.
引用
收藏
页数:11
相关论文
共 71 条
[1]  
Abbe E., 1873, Arch. Mikrosk. Anat., V9, P413, DOI DOI 10.1007/BF02956173
[2]  
[Anonymous], EFS10512
[3]   Perfect control of reflection and refraction using spatially dispersive metasurfaces [J].
Asadchy, V. S. ;
Albooyeh, M. ;
Tcvetkova, S. N. ;
Diaz-Rubio, A. ;
Ra'di, Y. ;
Tretyakov, S. A. .
PHYSICAL REVIEW B, 2016, 94 (07)
[4]  
Balanis C. A., 2016, Antenna theory: analysis and design
[5]   Electromagnetic Nonreciprocity [J].
Caloz, Christophe ;
Alu, Andrea ;
Tretyakov, Sergei ;
Sounas, Dimitrios ;
Achouri, Karim ;
Deck-Leger, Zoe-Lise .
PHYSICAL REVIEW APPLIED, 2018, 10 (04)
[6]   Dynamic Beam Steering With Reconfigurable Metagratings [J].
Casolaro, Andrea ;
Toscano, Alessandro ;
Alu, Andrea ;
Bilotti, Filiberto .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (03) :1542-1552
[7]   A Reconfigurable Active Huygens' Metalens [J].
Chen, Ke ;
Feng, Yijun ;
Monticone, Francesco ;
Zhao, Junming ;
Zhu, Bo ;
Jiang, Tian ;
Zhang, Lei ;
Kim, Yongjune ;
Ding, Xumin ;
Zhang, Shuang ;
Alu, Andrea ;
Qiu, Cheng-Wei .
ADVANCED MATERIALS, 2017, 29 (17)
[8]   Wideband 400-Element Electronically Reconfigurable Transmitarray in X Band [J].
Clemente, Antonio ;
Dussopt, Laurent ;
Sauleau, Ronan ;
Potier, Patrick ;
Pouliguen, Philippe .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (10) :5017-5027
[9]   Coding metamaterials, digital metamaterials and programmable metamaterials [J].
Cui, Tie Jun ;
Qi, Mei Qing ;
Wan, Xiang ;
Zhao, Jie ;
Cheng, Qiang .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e218-e218
[10]   Tunable Metasurfaces Based on Active Materials [J].
Cui, Tong ;
Bai, Benfeng ;
Sun, Hong-Bo .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (10)