Phase synchronization of fluid-fluid interfaces as hydrodynamically coupled oscillators

被引:14
|
作者
Um, Eujin [1 ]
Kim, Minjun [1 ]
Kim, Hyoungsoo [2 ]
Kang, Joo H. [3 ]
Stone, Howard A. [4 ]
Jeong, Joonwoo [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Dept Phys, Ulsan 44919, South Korea
[2] Korea Adv Inst Sci & Technol KAIST, Dept Mech Engn, Daejeon 34141, South Korea
[3] Ulsan Natl Inst Sci & Technol UNIST, Dept Biomed Engn, Ulsan 44919, South Korea
[4] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
DROPLETS; GENERATION; CHANNEL; TRAINS;
D O I
10.1038/s41467-020-18930-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hydrodynamic interactions play a role in synchronized motions of coupled oscillators in fluids, and understanding the mechanism will facilitate development of applications in fluid mechanics. For example, synchronization phenomenon in two-phase flow will benefit the design of future microfluidic devices, allowing spatiotemporal control of microdroplet generation without additional integration of control elements. In this work, utilizing a characteristic oscillation of adjacent interfaces between two immiscible fluids in a microfluidic platform, we discover that the system can act as a coupled oscillator, notably showing spontaneous in-phase synchronization of droplet breakup. With this observation of in-phase synchronization, the coupled droplet generator exhibits a complete set of modes of coupled oscillators, including out-of-phase synchronization and nonsynchronous modes. We present a theoretical model to elucidate how a negative feedback mechanism, tied to the distance between the interfaces, induces the in-phase synchronization. We also identify the criterion for the transition from in-phase to out-of-phase oscillations.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Self assembly of nanorods on microspheres at fluid-fluid interfaces
    Thomas, Neethu
    Shivkumar, Sanjana
    Mani, Ethayaraja
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (25) : 14201 - 14209
  • [32] Molecular basis of protein adsorption at fluid-fluid interfaces
    Damodaran, S
    Rao, CS
    FOOD COLLOIDS: FUNDAMENTALS OF FORMULATION, 2001, (258): : 165 - 180
  • [33] The effect of temperature on food emulsifiers at fluid-fluid interfaces
    Patino, JMR
    Niño, MRR
    Sánchez, CC
    García, JMN
    Mateo, GRR
    Fernández, MC
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2001, 21 (1-3) : 87 - 99
  • [34] Lattice Boltzmann simulations of flows with fluid-fluid interfaces
    Jia, Xinli
    McLaughlin, J. B.
    Kontomaris, K.
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2008, 3 (02) : 124 - 143
  • [35] Interfacial Activity of Nonamphiphilic Particles in Fluid-Fluid Interfaces
    Zhang, Yi
    Wang, Songcheng
    Zhou, Jiarun
    Zhao, Ruiyang
    Benz, Gregory
    Tcheimou, Stephane
    Meredith, J. Carson
    Behrens, Sven H.
    LANGMUIR, 2017, 33 (18) : 4511 - 4519
  • [37] EQUILIBRIUM AND DYNAMICS OF ADSORPTION OF SURFACTANTS AT FLUID-FLUID INTERFACES
    BORWANKAR, RP
    WASAN, DT
    CHEMICAL ENGINEERING SCIENCE, 1988, 43 (06) : 1323 - 1337
  • [38] Fluid-fluid interfaces in metal-organic frameworks
    Eshraghi, Mojtaba
    Hoeft, Nicolas
    Horbach, Juergen
    MOLECULAR PHYSICS, 2018, 116 (21-22) : 3292 - 3300
  • [39] Editorial: dynamics and rheology of complex fluid-fluid interfaces
    Fuller, Gerald G.
    Vermant, Jan
    SOFT MATTER, 2011, 7 (17) : 7583 - 7585
  • [40] 2D materials at fluid-fluid interfaces
    Rodier, Brad
    Wei, Peiran
    de Leon, Al
    Luo, Qinmo
    Pachuta, Kevin
    Sehirlioglu, Alp
    Pentzer, Emily
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254