Transfer learning for self-supervised, blind-spot seismic denoising

被引:15
作者
Birnie, Claire [1 ]
Alkhalifah, Tariq [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
关键词
microseismic; noise suppression; deep learning; self-supervised learning; blind-spot network; transfer learning;
D O I
10.3389/feart.2022.1053279
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Noise is ever present in seismic data and arises from numerous sources and is continually evolving, both spatially and temporally. The use of supervised deep learning procedures for denoising of seismic datasets often results in poor performance: this is due to the lack of noise-free field data to act as training targets and the large difference in characteristics between synthetic and field datasets. Self-supervised, blind-spot networks typically overcome these limitation by training directly on the raw, noisy data. However, such networks often rely on a random noise assumption, and their denoising capabilities quickly decrease in the presence of even minimally-correlated noise. Extending from blind-spots to blind-masks has been shown to efficiently suppress coherent noise along a specific direction, but it cannot adapt to the ever-changing properties of noise. To preempt the network's ability to predict the signal and reduce its opportunity to learn the noise properties, we propose an initial, supervised training of the network on a frugally-generated synthetic dataset prior to fine-tuning in a self-supervised manner on the field dataset of interest. Considering the change in peak signal-to-noise ratio, as well as the volume of noise reduced and signal leakage observed, using a semi-synthetic example we illustrate the clear benefit in initialising the self-supervised network with the weights from a supervised base-training. This is further supported by a test on a field dataset where the fine-tuned network strikes the best balance between signal preservation and noise reduction. Finally, the use of the unrealistic, frugally-generated synthetic dataset for the supervised base-training includes a number of benefits: minimal prior geological knowledge is required, substantially reduced computational cost for the dataset generation, and a reduced requirement of re-training the network should recording conditions change, to name a few. Such benefits result in a robust denoising procedure suited for long term, passive seismic monitoring.
引用
收藏
页数:15
相关论文
共 35 条
[1]  
Alkhalifah T., 2021, PROC 82 EAGE ANN C E, P1, DOI DOI 10.3997/2214-4609.202113262
[2]  
Auger E., 2013, SEG TECHNICAL PROGRA
[3]  
Bardainne T., 2009, SEG TECHNICAL PROGRA, P1547
[4]  
Birnie C, 2021, ARTIF INTELL GEOSCI, V2, P47, DOI 10.1016/j.aiig.2021.11.001
[5]   On the importance of benchmarking algorithms under realistic noise conditions [J].
Birnie, Claire ;
Chambers, Kit ;
Angus, Doug ;
Stork, Anna L. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 221 (01) :504-520
[6]   Seismic arrival enhancement through the use of noise whitening [J].
Birnie, Claire ;
Chambers, Kit ;
Angus, Doug .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2017, 262 :80-89
[7]   Analysis and models of pre-injection surface seismic array noise recorded at the Aquistore carbon storage site [J].
Birnie, Claire ;
Chambers, Kit ;
Angus, Doug ;
Stork, Anna L. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 206 (02) :1246-1260
[8]  
Broaddus C, 2020, I S BIOMED IMAGING, P159, DOI [10.1109/ISBI45749.2020.9098336, 10.1109/isbi45749.2020.9098336]
[9]   The coherency of ambient seismic noise recorded during land surveys and the resulting implications for the effectiveness of geophone arrays [J].
Dean, Timothy ;
Dupuis, J. Christian ;
Hassan, Rakib .
GEOPHYSICS, 2015, 80 (03) :P1-P10
[10]  
Eisner L., 2008, SEG ANN INT M, V27, P1431, DOI [DOI 10.1190/1.3059184, 10.1190/1.3059184]