The Mars 2020 Engineering Cameras and Microphone on the Perseverance Rover: A Next-Generation Imaging System for Mars Exploration

被引:87
作者
Maki, J. N. [1 ]
Gruel, D. [1 ]
McKinney, C. [1 ]
Ravine, M. A. [2 ]
Morales, M. [1 ]
Lee, D. [1 ]
Willson, R. [1 ]
Copley-Woods, D. [1 ]
Valvo, M. [1 ]
Goodsall, T. [1 ]
McGuire, J. [1 ]
Sellar, R. G. [1 ]
Schaffner, J. A. [1 ,2 ]
Caplinger, M. A. [2 ]
Shamah, J. M. [2 ]
Johnson, A. E. [1 ]
Ansari, H. [1 ]
Singh, K. [1 ]
Litwin, T. [1 ]
Deen, R. [1 ]
Culver, A. [1 ]
Ruoff, N. [1 ]
Petrizzo, D. [1 ]
Kessler, D. [1 ]
Basset, C. [1 ]
Estlin, T. [1 ]
Alibay, F. [1 ]
Nelessen, A. [1 ]
Algermissen, S. [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[2] Malin Space Sci Syst, San Diego, CA USA
基金
美国国家航空航天局;
关键词
Mars; Remote sensing; Planetary exploration; Rovers; Cameras; Space  exploration; INDUCED BREAKDOWN SPECTROSCOPY; IMAGER;
D O I
10.1007/s11214-020-00765-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Mars 2020 Perseverance rover is equipped with a next-generation engineering camera imaging system that represents an upgrade over previous Mars rover missions. These upgrades will improve the operational capabilities of the rover with an emphasis on drive planning, robotic arm operation, instrument operations, sample caching activities, and documentation of key events during entry, descent, and landing (EDL). There are a total of 16 cameras in the Perseverance engineering imaging system, including 9 cameras for surface operations and 7 cameras for EDL documentation. There are 3 types of cameras designed for surface operations: Navigation cameras (Navcams, quantity 2), Hazard Avoidance Cameras (Hazcams, quantity 6), and Cachecam (quantity 1). The Navcams will acquire color stereo images of the surface with a 96 degrees x73 degrees field of view at 0.33 mrad/pixel. The Hazcams will acquire color stereo images of the surface with a 136 degrees x102 circle at 0.46 mrad/pixel. The Cachecam, a new camera type, will acquire images of Martian material inside the sample tubes during caching operations at a spatial scale of 12.5 microns/pixel. There are 5 types of EDL documentation cameras: The Parachute Uplook Cameras (PUCs, quantity 3), the Descent stage Downlook Camera (DDC, quantity 1), the Rover Uplook Camera (RUC, quantity 1), the Rover Descent Camera (RDC, quantity 1), and the Lander Vision System (LVS) Camera (LCAM, quantity 1). The PUCs are mounted on the parachute support structure and will acquire video of the parachute deployment event as part of a system to characterize parachute performance. The DDC is attached to the descent stage and pointed downward, it will characterize vehicle dynamics by capturing video of the rover as it descends from the skycrane. The rover-mounted RUC, attached to the rover and looking upward, will capture similar video of the skycrane from the vantage point of the rover and will also acquire video of the descent stage flyaway event. The RDC, attached to the rover and looking downward, will document plume dynamics by imaging the Martian surface before, during, and after rover touchdown. The LCAM, mounted to the bottom of the rover chassis and pointed downward, will acquire 90 degrees x90 degrees FOV images during the parachute descent phase of EDL as input to an onboard map localization by the Lander Vision System (LVS). The rover also carries a microphone, mounted externally on the rover chassis, to capture acoustic signatures during and after EDL. The Perseverance rover launched from Earth on July 30th, 2020, and touchdown on Mars is scheduled for February 18th, 2021.
引用
收藏
页数:48
相关论文
共 43 条
  • [1] Image and Data Processing for InSight Lander Operations and Science
    Abarca, H.
    Deen, R.
    Hollins, G.
    Zamani, P.
    Maki, J.
    Tinio, A.
    Pariser, O.
    Ayoub, F.
    Toole, N.
    Algermissen, S.
    Soliman, T.
    Lu, Y.
    Golombek, M.
    Calef, F., III
    Grimes, K.
    De Cesare, C.
    Sorice, C.
    [J]. SPACE SCIENCE REVIEWS, 2019, 215 (02)
  • [2] Processing of Mars Exploration Rover imagery for science and operations planning
    Alexander, DA
    Deen, RG
    Andres, PM
    Zamani, P
    Mortensen, HB
    Chen, AC
    Cayanan, MK
    Hall, JR
    Klochko, VS
    Pariser, O
    Stanley, CL
    Thompson, CK
    Yagi, GM
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2006, 111 (E2)
  • [3] PIXL: Planetary Instrument for X-Ray Lithochemistry
    Allwood, Abigail C.
    Wade, Lawrence A.
    Foote, Marc C.
    Elam, William Timothy
    Hurowitz, Joel A.
    Battel, Steven
    Dawson, Douglas E.
    Denise, Robert W.
    Ek, Eric M.
    Gilbert, Martin S.
    King, Matthew E.
    Liebe, Carl Christian
    Parker, Todd
    Pedersen, David A. K.
    Randall, David P.
    Sharrow, Robert F.
    Sondheim, Michael E.
    Allen, George
    Arnett, Kenneth
    Au, Mitchell H.
    Basset, Christophe
    Benn, Mathias
    Bousman, John C.
    Braun, David
    Calvet, Robert J.
    Clark, Benton
    Cinquini, Luca
    Conaby, Sterling
    Conley, Henry A.
    Davidoff, Scott
    Delaney, Jenna
    Denver, Troelz
    Diaz, Ernesto
    Doran, Gary B.
    Ervin, Joan
    Evans, Michael
    Flannery, David O.
    Gao, Ning
    Gross, Johannes
    Grotzinger, John
    Hannah, Brett
    Harris, Jackson T.
    Harris, Cathleen M.
    He, Yejun
    Heirwegh, Christopher M.
    Hernandez, Christina
    Hertzberg, Eric
    Hodyss, Robert P.
    Holden, James R.
    Hummel, Christopher
    [J]. SPACE SCIENCE REVIEWS, 2020, 216 (08)
  • [4] [Anonymous], 2003, J GEOPHYS RES-PLANET, DOI DOI 10.1029/2003JE002070
  • [5] Bayer B. E., 1976, U.S. Patent, Patent No. 3971065
  • [6] The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation
    Bell, J. F.
    Maki, J. N.
    Mehall, G. L.
    Ravine, M. A.
    Caplinger, M. A.
    Bailey, Z. J.
    Brylow, S.
    Schaffner, J. A.
    Kinch, K. M.
    Madsen, M. B.
    Winhold, A.
    Hayes, A. G.
    Corlies, P.
    Tate, C.
    Barrington, M.
    Cisneros, E.
    Jensen, E.
    Paris, K.
    Crawford, K.
    Rojas, C.
    Mehall, L.
    Joseph, J.
    Proton, J. B.
    Cluff, N.
    Deen, R. G.
    Betts, B.
    Cloutis, E.
    Coates, A. J.
    Colaprete, A.
    Edgett, K. S.
    Ehlmann, B. L.
    Fagents, S.
    Grotzinger, J. P.
    Hardgrove, C.
    Herkenhoff, K. E.
    Horgan, B.
    Jaumann, R.
    Johnson, J. R.
    Lemmon, M.
    Paar, G.
    Caballo-Perucha, M.
    Gupta, S.
    Traxler, C.
    Preusker, F.
    Rice, M. S.
    Robinson, M. S.
    Schmitz, N.
    Sullivan, R.
    Wolff, M. J.
    [J]. SPACE SCIENCE REVIEWS, 2021, 217 (01)
  • [7] Bhartia R., 2020, SPACE SCI REV
  • [8] Casani J., 2000, JPL SPECIAL REV BOAR
  • [9] Listening to laser sparks: a link between Laser-Induced Breakdown Spectroscopy, acoustic measurements and crater morphology
    Chide, Baptiste
    Maurice, Sylvestre
    Murdoch, Naomi
    Lasue, Jeremie
    Bousquet, Bruno
    Jacob, Xavier
    Cousin, Agnes
    Forni, Olivier
    Gasnault, Olivier
    Meslin, Pierre-Yves
    Fronton, Jean-Francois
    Bassas-Portus, Marti
    Cadu, Alexandre
    Sournac, Anthony
    Mimoun, David
    Wiens, Roger C.
    [J]. SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2019, 153 : 50 - 60
  • [10] Curiosity's Mars Hand Lens Imager (MAHLI) Investigation
    Edgett, Kenneth S.
    Yingst, R. Aileen
    Ravine, Michael A.
    Caplinger, Michael A.
    Maki, Justin N.
    Ghaemi, F. Tony
    Schaffner, Jacob A.
    Bell, James F., III
    Edwards, Laurence J.
    Herkenhoff, Kenneth E.
    Heydari, Ezat
    Kah, Linda C.
    Lemmon, Mark T.
    Minitti, Michelle E.
    Olson, Timothy S.
    Parker, Timothy J.
    Rowland, Scott K.
    Schieber, Juergen
    Sullivan, Robert J.
    Sumner, Dawn Y.
    Thomas, Peter C.
    Jensen, Elsa H.
    Simmonds, John J.
    Sengstacken, Aaron J.
    Willson, Reg G.
    Goetz, Walter
    [J]. SPACE SCIENCE REVIEWS, 2012, 170 (1-4) : 259 - 317