Families of subcritical spirals in highly counter-rotating Taylor-Couette flow

被引:17
作者
Meseguer, Alvaro [1 ]
Mellibovsky, Fernando [1 ]
Avila, Marc [2 ]
Marques, Francisco [1 ]
机构
[1] Univ Politecn Cataluna, Dept Fis Aplicada, ES-08034 Barcelona, Spain
[2] Max Planck Inst Dynam & Self Org, D-37073 Gottingen, Germany
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 03期
关键词
Couette flow; flow instability; Navier-Stokes equations; rotational flow; shear turbulence; waves; EXACT COHERENT STRUCTURES; PIPE-FLOW; PLANE POISEUILLE; STABILITY; INSTABILITY; TRANSITION; TURBULENCE; SYSTEM;
D O I
10.1103/PhysRevE.79.036309
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A comprehensive numerical exploration of secondary finite-amplitude solutions in small-gap Taylor-Couette flow for high counter-rotating Reynolds numbers is provided, using Newton-Krylov methods embedded within arclength continuation schemes. Two different families of rotating waves have been identified: short axial wavelength subcritical spirals ascribed to centrifugal mechanisms and large axial scale supercritical spirals and ribbons associated with shear dynamics in the outer linearly stable radial region. This study is a first step taken in order to provide the inner structure of the skeleton of equilibria that may be responsible for the intermittent regime usually termed as spiral turbulence that has been reported by many experimentalists in the past.
引用
收藏
页数:7
相关论文
共 50 条
[21]   The spherical Taylor-Couette flow [J].
Mahloul, M. ;
Mahamdia, A. ;
Kristiawan, M. .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2016, 59 :1-6
[22]   Instability of Taylor-Couette flow between concentric rotating cylinders [J].
Dou, Hua-Shu ;
Khoo, Boo Cheong ;
Yeo, Khoon Seng .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2008, 47 (11) :1422-1435
[23]   Self-sustaining process in Taylor-Couette flow [J].
Dessup, Tommy ;
Tuckerman, Laurette S. ;
Wesfreid, Jose Eduardo ;
Barkley, Dwight ;
Willis, Ashley P. .
PHYSICAL REVIEW FLUIDS, 2018, 3 (12)
[24]   Localized modulation of rotating waves in Taylor-Couette flow [J].
Abshagen, J. ;
von Stamm, J. ;
Heise, M. ;
Will, Ch. ;
Pfister, G. .
PHYSICAL REVIEW E, 2012, 85 (05)
[25]   FLOW PATTERNS IN A COMBINED TAYLOR-COUETTE GEOMETRY [J].
Lalaoua, A. ;
Chaieb, Z. .
CONFERENCE TOPICAL PROBLEMS OF FLUID MECHANICS 2016, 2016, :109-118
[26]   Components of wall shear rate in wavy Taylor-Couette flow [J].
Kristiawan, Magdalena ;
Jirout, Tomas ;
Sobolik, Vaclav .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2011, 35 (07) :1304-1312
[27]   Numerical study of Taylor-Couette flow with longitudinal corrugated surface [J].
Razzak, Md Abdur ;
Cheong, Khoo Boo ;
Lua, Kim Boon .
PHYSICS OF FLUIDS, 2020, 32 (05)
[28]   Multiple states in highly turbulent Taylor-Couette flow [J].
Huisman, Sander G. ;
van der Veen, Roeland C. A. ;
Sun, Chao ;
Lohse, Detlef .
NATURE COMMUNICATIONS, 2014, 5
[29]   Effect of the number of vortices on the torque scaling in Taylor-Couette flow [J].
Martinez-Arias, B. ;
Peixinho, J. ;
Crumeyrolle, O. ;
Mutabazi, I. .
JOURNAL OF FLUID MECHANICS, 2014, 748 :756-767
[30]   Destabilizing Taylor-Couette flow with suction [J].
Gallet, Basile ;
Doering, Charles R. ;
Spiegel, Edward A. .
PHYSICS OF FLUIDS, 2010, 22 (03) :5-15