Switchable oil/water separation with efficient and robust Janus nanofiber membranes

被引:143
作者
Jiang, Yunshan [1 ]
Hou, Jingwei [3 ]
Xu, Jia [1 ,2 ]
Shan, Baotian [1 ]
机构
[1] Ocean Univ China, Minist Educ, Coll Chem & Chem Engn, Key Lab Marine Chem Theory & Technol, Qingdao 266100, Peoples R China
[2] Ocean Univ China, Sch Med & Pharm, Qingdao 266100, Peoples R China
[3] Univ New South Wales, UNESCO Ctr Membrane Sci & Technol, Sch Chem Engn, Sydney, NSW 2052, Australia
关键词
Janus nanofiber membrane; Electrospun nanofiber; Carbon nanotube; Switchable oil/water separation; Mechanical stability; ULTRAFAST SEPARATION; HIGH-FLUX; COMPOSITE MEMBRANES; EMULSION SEPARATION; NETWORK FILMS; WATER; SCAFFOLDS; LAYER; SUPERCAPACITORS; PERFORMANCE;
D O I
10.1016/j.carbon.2017.01.053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, we proposed a facile approach to fabricate Janus membranes showing switchable separations of oil-in-water and water-in-oil emulsions. The Janus membrane was constructed via a hydrophilic polyacrylonitrile electrospun nanofiber (PAN(EN)) membrane with a single-side hydrophobic carbon nanotube (CNTs) network coating. The growth mechanism of the CNTs network on a nanofiber membrane was proposed and experimentally verified via modulating CNTs loading and depositing time. By introducing an ultralow amount of CNTs (loading of 1.6-31.8 mg m(-2)), the membrane exhibited both satisfactory mechanical and chemistry stability. Moreover, the CNTs@PAN(EN) membrane exhibited asymmetric wettability on each side: the hydrophilic PAN(EN) side had underwater oleophobicity, and the hydrophobic CNTs side had underwater oleophilicity. As a result, the CNTs@PAN(EN) membranes had a switchable oil/water separation performance in different operating modes: highly efficient oil-in-water emulsion separation with the PAN(EN) side and water-in-oil emulsion separation with the CNTs side. Due to their highly porous and surface anisotropic nature, the Janus nanofiber membranes had an ultrahigh operational flux and separation efficiency, and the incorporation of CNTs could promote the water flux via the facilitated water detachment on the permeate side, promising for water remediation in practice. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:477 / 485
页数:9
相关论文
共 42 条
  • [1] Porous materials for oil spill cleanup: A review of synthesis and absorbing properties
    Adebajo, MO
    Frost, RL
    Kloprogge, JT
    Carmody, O
    Kokot, S
    [J]. JOURNAL OF POROUS MATERIALS, 2003, 10 (03) : 159 - 170
  • [2] Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface
    Broje, Victoria
    Keller, Arturo A.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (24) : 7914 - 7918
  • [3] Hydrophobic/Hydrophilic Cooperative Janus System for Enhancement of Fog Collection
    Cao, Moyuan
    Xiao, Jiasheng
    Yu, Cunming
    Li, Kan
    Jiang, Lei
    [J]. SMALL, 2015, 11 (34) : 4379 - 4384
  • [4] Electrospinning: designed architectures for energy conversion and storage devices
    Cavaliere, Sara
    Subianto, Surya
    Savych, Iuliia
    Jones, Deborah J.
    Roziere, Jacques
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (12) : 4761 - 4785
  • [5] Mechanical testing of electrospun PCL fibers
    Croisier, F.
    Duwez, A. -S.
    Jerome, C.
    Leonard, A. F.
    van der Werf, K. O.
    Dijkstra, P. J.
    Bennink, M. L.
    [J]. ACTA BIOMATERIALIA, 2012, 8 (01) : 218 - 224
  • [6] Electrospinning materials for energy-related applications and devices
    Dong, Zexuan
    Kennedy, Scott J.
    Wu, Yiquan
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (11) : 4886 - 4904
  • [7] Integrated oil separation and water purification by a double-layer TiO2-based mesh
    Gao, Changrui
    Sun, Zhongxue
    Li, Kan
    Chen, Yuning
    Cao, Yingze
    Zhang, Shiyan
    Feng, Lin
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) : 1147 - 1151
  • [8] Superwetting polymer-decorated SWCNT composite ultrathin films for ultrafast separation of oil-in-water nanoemulsions
    Gao, Shou Jian
    Zhu, Yu Zhang
    Zhang, Feng
    Jin, Jian
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (06) : 2895 - 2902
  • [9] Photoinduced Superwetting Single-Walled Carbon Nanotube/TiO2 Ultrathin Network Films for Ultrafast Separation of Oil-in-Water Emulsions
    Gao, Shou Jian
    Shi, Zhun
    Zhang, Wen Bin
    Zhang, Feng
    Jin, Jian
    [J]. ACS NANO, 2014, 8 (06) : 6344 - 6352
  • [10] Robust Superhydrophobic Foam: A Graphdiyne-Based Hierarchical Architecture for Oil/Water Separation
    Gao, Xin
    Zhou, Jingyuan
    Du, Ran
    Xie, Ziqian
    Deng, Shibin
    Liu, Rong
    Liu, Zhongfan
    Zhang, Jin
    [J]. ADVANCED MATERIALS, 2016, 28 (01) : 168 - +