FINITE SAMPLE DEVIATION AND VARIANCE BOUNDS FOR FIRST ORDER AUTOREGRESSIVE PROCESSES

被引:0
作者
Gonzalez, Rodrigo A. [1 ]
Rojas, Cristian R. [1 ]
机构
[1] KTH Royal Inst Technol, Div Decis & Control Syst, Stockholm, Sweden
来源
2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2020年
基金
瑞典研究理事会;
关键词
Autoregressive Processes; Non-Asymptotic Estimation; Least Squares; Finite Sample Analysis; EXPONENTIAL INEQUALITIES; TIME IDENTIFICATION; MARTINGALES;
D O I
10.1109/icassp40776.2020.9053095
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we study finite-sample properties of the least squares estimator in first order autoregressive processes. By leveraging a result from decoupling theory, we derive upper bounds on the probability that the estimate deviates by at least a positive epsilon from its true value. Our results consider both stable and unstable processes. Afterwards, we obtain problem-dependent non-asymptotic bounds on the variance of this estimator, valid for sample sizes greater than or equal to seven. Via simulations we analyze the conservatism of our bounds, and show that they reliably capture the true behavior of the quantities of interest.
引用
收藏
页码:5380 / 5384
页数:5
相关论文
共 25 条
[1]  
[Anonymous], 1960, A treatise on the theory of determinants
[2]   Large deviations for quadratic forms of stationary Gaussian processes [J].
Bercu, B ;
Gamboa, F ;
Rouault, A .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 71 (01) :75-90
[3]   On large deviations in the Gaussian autoregressive process: stable, unstable and explosive cases [J].
Bercu, B .
BERNOULLI, 2001, 7 (02) :299-316
[4]   EXPONENTIAL INEQUALITIES FOR SELF-NORMALIZED MARTINGALES WITH APPLICATIONS [J].
Bercu, Bernard ;
Touati, Abderrahmen .
ANNALS OF APPLIED PROBABILITY, 2008, 18 (05) :1848-1869
[5]   Finite sample properties of system identification methods [J].
Campi, MC ;
Weyer, E .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (08) :1329-1334
[6]  
de la Pena V. H., 2008, Self-Normalized Processes: Limit theory and Statistical Applications
[7]  
de la Pena V. H., 1999, DECOUPLING DEPENDENC
[8]  
de la Peña VH, 1999, ANN PROBAB, V27, P537
[9]   Finite time identification in unstable linear systems [J].
Faradonbeh, Mohamad Kazem Shirani ;
Tewari, Ambuj ;
Michailidis, George .
AUTOMATICA, 2018, 96 :342-353
[10]   THE EXACT CRAMER-RAO BOUND FOR GAUSSIAN AUTOREGRESSIVE PROCESSES [J].
FRIEDLANDER, B ;
PORAT, B .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1989, 25 (01) :3-8