Atomic structures of peptide self-assembly mimics

被引:49
|
作者
Makabe, Koki [1 ]
McElheny, Dan [1 ]
Tereshko, Valentia [1 ]
Hilyard, Aaron [1 ]
Gawlak, Grzegorz [1 ]
Yan, Shude [1 ]
Koide, Akiko [1 ]
Koide, Shohei [1 ]
机构
[1] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
关键词
beta-sheet; beta-strand interaction; amyloid fibril; nanomaterial; protein engineering;
D O I
10.1073/pnas.0606690103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although the beta-rich self-assemblies are a major structural class for polypeptides and the focus of intense research, little is known about their atomic structures and dynamics due to their insoluble and noncrystalline nature. We developed a protein engineering strategy that captures a self-assembly segment in a water-soluble molecule. A predefined number of self-assembling peptide units are linked, and the beta-sheet ends are capped to prevent aggregation, which yields a mono-dispersed soluble protein. We tested this strategy by using Borrelia outer surface protein (OspA) whose single-layer beta-sheet located between two globular domains consists of two beta-hairpin units and thus can be considered as a prototype of self-assembly. We constructed self-assembly mimics of different sizes and determined their atomic structures using x-ray crystallography and NMR spectroscopy. Highly regular beta-sheet geometries were maintained in these structures, and peptide units had a nearly identical conformation, supporting the concept that a peptide in the regular beta-geometry is primed for self-assembly. However, we found small but significant differences in the relative orientation between adjacent peptide units in terms of beta-sheet twist and bend, suggesting their inherent flexibility. Modeling shows how this conformational diversity, when propagated over a large number of peptide units, can lead to a substantial degree of nanoscale polymorphism of self-assemblies.
引用
收藏
页码:17753 / 17758
页数:6
相关论文
共 50 条
  • [21] PEPTIDE SELF-ASSEMBLY AND MICROSTRUCTURE FORMATION
    Moretto, A.
    JOURNAL OF PEPTIDE SCIENCE, 2014, 20 : S78 - S79
  • [22] Self-assembly of Peptide Amphiphiles and Their Applications
    Wang Jianxun
    Qin Siyong
    Cai Tengteng
    Zhang Xianzheng
    Zhuo Renxi
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2015, 36 (02): : 201 - 211
  • [23] Self-assembly of peptide based nanotubes
    Buriak, Jillian M.
    Reza Ghadiri, M.
    Materials Science and Engineering C, 1997, 4 (04): : 207 - 212
  • [24] Peptide and Protein Self-Assembly and Interactions
    Lampel, Ayala
    Reches, Meital
    ISRAEL JOURNAL OF CHEMISTRY, 2022, 62 (9-10)
  • [25] Self-Assembly and Hydrogelation of Peptide Amphiphiles
    Irwansyah
    Sihombing, Riwandi
    Suwarso, Wahyudi Priyono
    MAKARA JOURNAL OF SCIENCE, 2012, 16 (01) : 51 - 57
  • [26] Self-Assembly of a Dentinogenic Peptide Hydrogel
    Nguyen, Peter K.
    Gao, William
    Patel, Saloni D.
    Siddiqui, Zain
    Weiner, Saul
    Shimizu, Emi
    Sarkar, Biplab
    Kumar, Vivek A.
    ACS OMEGA, 2018, 3 (06): : 5980 - 5987
  • [27] Effects of nanobubbles on peptide self-assembly
    Wang, Yujiao
    Shen, Zhiwei
    Guo, Zhen
    Hu, Jun
    Zhang, Yi
    NANOSCALE, 2018, 10 (42) : 20007 - 20012
  • [28] Polymorphismin peptide self-assembly visualized
    Tirrell, Matthew
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (06)
  • [29] Recent development of peptide self-assembly
    Xiubo Zhao
    Progress in Natural Science, 2008, (06) : 653 - 660
  • [30] Photolytic control of peptide self-assembly
    1600, American Chemical Society (125):