Electromagnetic dynamical characteristics of a surface plasmon-polariton

被引:9
作者
Bekshaev, A. Y. [1 ]
Mikhaylovskaya, L., V [1 ]
机构
[1] II Mechnikov Natl Univ, Phys Res Inst, Dvorianska, UA-65082 Odessa, Ukraine
来源
OPTIK | 2019年 / 186卷
关键词
Surface plasmon-polariton; Electromagnetic momentum; Optical spin; Dispersive media; Spin-orbital decomposition; Magnetization; SPIN ANGULAR-MOMENTUM; OPTICAL MOMENTUM; WAVE; DENSITY; FIELDS; FORCE; MODES; LIGHT;
D O I
10.1016/j.ijleo.2019.04.098
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider an electromagnetic field near the interface between two media with arbitrary real frequency-dependent permittivities and permeabilities, under conditions supporting the surface plasmon-polariton (SPP) propagation. The dispersion of the electric and magnetic properties is taken into account based on the recent approach for description of the spin and momentum of electromagnetic field in complex media [Phys. Rev. Lett. 119, 073901 (2017); New J. Phys., 19, 123014 (2017)]. It involves the Minkowski momentum decomposition into spin and orbital parts with the dispersion-modified permittivities and permeabilities. Explicit expressions are derived for spatial densities of the energy, energy flow, spin and orbital momenta and angular momenta of the transverse-magnetic (TM) SPP field. The expressions are free from non-physical singularities; the only singular contribution describes a strictly localized surface part of the spin momentum that can be associated with the magnetization current in the conductive component of the SPP-supporting structure. On this ground, a phenomenological theory of the SPP-induced magnetization (predicted earlier based on the simplified microscopic approach) is outlined. Possible modifications and generalizations, including the transverse-electric (TE) SPP waves, are discussed.
引用
收藏
页码:405 / 417
页数:13
相关论文
共 60 条
[1]   The ubiquitous photonic wheel [J].
Aiello, Andrea ;
Banzer, Peter .
JOURNAL OF OPTICS, 2016, 18 (08)
[2]   From transverse angular momentum to photonic wheels [J].
Aiello, Andrea ;
Banzer, Peter ;
Neugebaueru, Martin ;
Leuchs, Gerd .
NATURE PHOTONICS, 2015, 9 (12) :789-795
[3]  
[Anonymous], 1985, Berkeley physics course
[4]  
Antognozzi M, 2016, NAT PHYS, V12, P731, DOI [10.1038/NPHYS3732, 10.1038/nphys3732]
[5]   Resolution of the Abraham-Minkowski Dilemma [J].
Barnett, Stephen M. .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[6]   The enigma of optical momentum in a medium [J].
Barnett, Stephen M. ;
Loudon, Rodney .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1914) :927-939
[7]   Spin and momentum of the light fields in inhomogeneous dispersive media with application to surface plasmon-polariton waves [J].
Bekshaev, A. Y. ;
Bliokh, K. Y. .
UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2018, 19 (01) :33-48
[8]   Transverse energy flows in vectorial fields of paraxial beams with singularities [J].
Bekshaev, A. Ya. ;
Soskin, M. S. .
OPTICS COMMUNICATIONS, 2007, 271 (02) :332-348
[9]   Internal flows and energy circulation in light beams [J].
Bekshaev, Aleksandr ;
Bliokh, Konstantin Y. ;
Soskin, Marat .
JOURNAL OF OPTICS, 2011, 13 (05)
[10]   Transverse Spin and Momentum in Two-Wave Interference [J].
Bekshaev, Aleksandr Y. ;
Bliokh, Konstantin Y. ;
Nori, Franco .
PHYSICAL REVIEW X, 2015, 5 (01)