Spectral properties of unbounded J-self-adjoint block operator matrices

被引:5
|
作者
Langer, Matthias [1 ]
Strauss, Michael [2 ]
机构
[1] Univ Strathclyde, Dept Math & Stat, 26 Richmond St, Glasgow G1 1XH, Lanark, Scotland
[2] Univ Sussex, Dept Math, Falmer Campus, Brighton BN1 9QH, E Sussex, England
基金
英国工程与自然科学研究理事会;
关键词
J-self-adjoint operator; spectral enclosure; Schur complement; quadratic numerical range; Krein space; spectrum of positive type; TRIPLE VARIATIONAL-PRINCIPLES; KREIN SPACES; DEFINITE TYPE; EIGENVALUES;
D O I
10.4171/JST/158
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the spectrum of unbounded J-self-adjoint block operator matrices. In particular, we prove enclosures for the spectrum, provide a sufficient condition for the spectrumbeing real and derive variational principles for certain real eigenvalues even in the presence of non-real spectrum. The latter lead to lower and upper bounds and asymptotic estimates for eigenvalues.
引用
收藏
页码:137 / 190
页数:54
相关论文
共 36 条
  • [21] SPECTRAL INCLUSION PROPERTY FOR A CLASS OF BLOCK OPERATOR MATRICES
    Qi, Yaru
    Qiu, Wenwen
    Trunk, Carsten
    Wilson, Mitsuru
    OPERATORS AND MATRICES, 2023, 17 (04): : 953 - 966
  • [22] A Note on J-positive Block Operator Matrices
    Kostenko, Aleksey
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 81 (01) : 113 - 125
  • [23] A Note on J-positive Block Operator Matrices
    Aleksey Kostenko
    Integral Equations and Operator Theory, 2015, 81 : 113 - 125
  • [24] Self-adjoint Analytic Operator Functions: Local Spectral Function and Inner Linearization
    Heinz Langer
    Alexander Markus
    Vladimir Matsaev
    Integral Equations and Operator Theory, 2009, 63 : 533 - 545
  • [25] Self-adjoint Analytic Operator Functions: Local Spectral Function and Inner Linearization
    Langer, Heinz
    Markus, Alexander
    Matsaev, Vladimir
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 63 (04) : 533 - 545
  • [26] Spectral Inclusion by the Quadratic Numerical Range of 2 x 2 Operator Matrices with Unbounded Entries
    Liu, Jie
    Huang, Junjie
    Chen, Alatancang
    FILOMAT, 2020, 34 (04) : 1283 - 1293
  • [27] An Approximate Solution of Inverse Spectral Problem for Perturbed Self-Adjoint Operator
    Zakirova, G. A.
    2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING, APPLICATIONS AND MANUFACTURING (ICIEAM), 2016,
  • [28] On some spectral properties of large block Laplacian random matrices
    Ding, Xue
    STATISTICS & PROBABILITY LETTERS, 2015, 99 : 61 - 69
  • [29] Investigation of the Dimension of the Spectral Projection of a Self-Adjoint Second-Order Quasidifferential Operator
    Vatolkin, M. Yu.
    RUSSIAN MATHEMATICS, 2024, 68 (07) : 34 - 48
  • [30] The Numerical Method of Solving of Inverse Spectral Problems Generated by Perturbed Self-Adjoint Operator
    Kadchenko, S., I
    Kadchenko, A., I
    Zakirova, G. A.
    Kadchenko, S., I
    2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING, APPLICATIONS AND MANUFACTURING (ICIEAM), 2016,