Spectral properties of unbounded J-self-adjoint block operator matrices

被引:5
|
作者
Langer, Matthias [1 ]
Strauss, Michael [2 ]
机构
[1] Univ Strathclyde, Dept Math & Stat, 26 Richmond St, Glasgow G1 1XH, Lanark, Scotland
[2] Univ Sussex, Dept Math, Falmer Campus, Brighton BN1 9QH, E Sussex, England
基金
英国工程与自然科学研究理事会;
关键词
J-self-adjoint operator; spectral enclosure; Schur complement; quadratic numerical range; Krein space; spectrum of positive type; TRIPLE VARIATIONAL-PRINCIPLES; KREIN SPACES; DEFINITE TYPE; EIGENVALUES;
D O I
10.4171/JST/158
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the spectrum of unbounded J-self-adjoint block operator matrices. In particular, we prove enclosures for the spectrum, provide a sufficient condition for the spectrumbeing real and derive variational principles for certain real eigenvalues even in the presence of non-real spectrum. The latter lead to lower and upper bounds and asymptotic estimates for eigenvalues.
引用
收藏
页码:137 / 190
页数:54
相关论文
共 36 条