Quantitative determination of phosphorus in seafood using laser-induced breakdown spectroscopy combined with machine learning

被引:26
|
作者
Tian, Ye [1 ]
Chen, Qian [1 ]
Lin, Yuqing [2 ]
Lu, Yuan [1 ]
Li, Ying [1 ]
Lin, Hong [2 ]
机构
[1] Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Peoples R China
[2] Ocean Univ China, Food Safety Lab, Qingdao 266003, Peoples R China
基金
中国国家自然科学基金;
关键词
Phosphorus detection; Laser-induced breakdown spectroscopy (LIBS); Seafood analysis; Matrix effect; Machine learning; MEAT; IDENTIFICATION; LIBS; QUANTIFICATION; CLASSIFICATION; ADULTERATION; CALCIUM; SAMPLES; ISSUES; MILK;
D O I
10.1016/j.sab.2020.106027
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Quantitative determination of phosphates or total phosphorus in seafood is of great importance for the fraud detection as well as food security issues. In this work, laser-induced breakdown spectroscopy (LIBS) was applied as a rapid method for phosphorus determination in three types of seafood including codfish, scallop and shrimp. Both univariate and multivariate regression models were established with special attentions on the correction of matrix effect to improve the analytical performances of LIBS. The obtained results showed that compared with the traditional univariate model and the linear PLS model, the non-linear SVM model could provide the best figures-of-merit with R-2 of 0.9904, RMSEC, RMSEP and ARE of 1.68 g/kg, 1.42 g/kg and 3.70%, respectively. The average RSD of prediction of SVM is 5.18%, which is much lower than the value of PLS (9.40%) and is comparable to the value of univariate model (4.11%). This indicates that SVM may be more suitable to address the non-linear behaviors in LIBS spectra caused by the matrix effect, and therefore leads to a more robust calibration model. The present results demonstrated the capacity of LIBS combined with machine learning in phosphorus determination of seafood products, which could be potentially used for on-site phosphates detection within the food supply chains.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine
    Zeng, Qingdong
    Chen, Guanghui
    Li, Wenxin
    Li, Zitao
    Tong, Juhong
    Yuan, Mengtian
    Wang, Boyun
    Ma, Honghua
    Liu, Yang
    Guo, Lianbo
    Yu, Huaqing
    PLASMA SCIENCE & TECHNOLOGY, 2022, 24 (08)
  • [42] Laser-induced breakdown spectroscopy for food authentication
    Markiewicz-Keszycka, Maria
    Cama-Moncunill, Raquel
    Casado-Gavalda, Maria Pietat
    Sullivan, Carl
    Cullen, Patrick J.
    CURRENT OPINION IN FOOD SCIENCE, 2019, 28 : 96 - 103
  • [43] Qualitative and Quantitative Analysis of Soils Using Laser-Induced Breakdown Spectroscopy and Chemometrics Tools
    Costa, V. C.
    Ferreira, S. dos Santos
    Santos, L. N.
    Speranca, M. A.
    da Silva, C. Santos
    Sodre, G. A.
    Pereira-Filho, E. R.
    JOURNAL OF APPLIED SPECTROSCOPY, 2020, 87 (02) : 378 - 386
  • [44] Laser-Induced Breakdown Spectroscopy Assisted by Machine Learning for Plastics/Polymers Identification
    Stefas, Dimitrios
    Gyftokostas, Nikolaos
    Bellou, Elli
    Couris, Stelios
    ATOMS, 2019, 7 (03) : 1 - 13
  • [45] Discrimination of lung tumor and boundary tissues based on laser-induced breakdown spectroscopy and machine learning
    Lin, Xiaomei
    Sun, Haoran
    Gao, Xun
    Xu, YuTing
    Wang, ZhenXing
    Wang, Yue
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2021, 180
  • [46] Fast identification and characterization of residual wastes via laser-induced breakdown spectroscopy and machine learning
    Yan, Beibei
    Liang, Rui
    Li, Bo
    Tao, Junyu
    Chen, Guanyi
    Cheng, Zhanjun
    Zhu, Zhifeng
    Li, Xiaofeng
    RESOURCES CONSERVATION AND RECYCLING, 2021, 174
  • [47] Industrial at-line analysis of coal properties using laser-induced breakdown spectroscopy combined with machine learning
    Song, Weiran
    Hou, Zongyu
    Gu, Weilun
    Wang, Hui
    Cui, Jiacheng
    Zhou, Zhenhua
    Yan, Gangyao
    Ye, Qing
    Li, Zhigang
    Wang, Zhe
    FUEL, 2021, 306 (306)
  • [48] Determination of potassium in ceramic raw materials using laser-induced breakdown spectroscopy combined with profile fitting
    Tang, Yun
    Guo, Lianbo
    Tang, Shisong
    Chu, Yanwu
    Zeng, Qingdong
    Zeng, Xiaoyan
    Duan, Jun
    Lu, Yongfeng
    APPLIED OPTICS, 2018, 57 (22) : 6451 - 6455
  • [49] Determination of austenitic steel alloys composition using laser-induced breakdown spectroscopy (LIBS) and machine learning algorithms
    Traparic, Ivan
    Ivkovic, Milivoje
    EUROPEAN PHYSICAL JOURNAL D, 2023, 77 (02)
  • [50] Determination of As in Industrial Wastewater by Laser-Induced Breakdown Spectroscopy
    Lin Zhao-xiang
    Chang Liang
    Li Jie
    Liu Lin-mei
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2009, 29 (06) : 1675 - 1677