The enumeration of permutations whose posets have a maximum element

被引:1
作者
Mansour, Toufik [1 ]
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
[2] Nankai Univ, Ctr Combinator, LPMC, Tianjin 300071, Peoples R China
关键词
Catalan numbers; functional equations; Padovan numbers; posets have a maximal element; restricted permutations;
D O I
10.1016/j.aam.2005.11.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Tenner [B.E. Tenner, Reduced decompositions and permutation patterns, J. Algebraic. Combin., in press, preprint arXiv: math. CO/0506242] studied the set of posets of a permutation of length n with unique maximal element, which arise naturally when studying the set of zonotopal tilings of Elnitsky's polygon. In this paper, we prove that the number of such posets is given by P-5n - 4P(5(n-1))+2P(5(n-2)) - Sigma(n-2)(j=0) C-j P5(n-2-j), where P-n is the nth Padovan number and C-n is the nth Catalan number. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:434 / 442
页数:9
相关论文
共 12 条
  • [1] ATKINSON MD, 1998, ELECTRON J COMB, V5
  • [2] Generating functions for generating trees
    Banderier, C
    Bousquet-Mélou, M
    Denise, A
    Flajolet, P
    Gardy, D
    Gouyou-Beauchamps, D
    [J]. DISCRETE MATHEMATICS, 2002, 246 (1-3) : 29 - 55
  • [3] BARCUCCI E, 2000, DISCRETE MATH THEOR, V4, P31
  • [4] Exact enumeration of 1342-avoiding permutations: A close link with labeled trees and planar maps
    Bona, M
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 80 (02) : 257 - 272
  • [5] Bona Miklos., 1998, Elec. J. Combinatorics, V5, pR31
  • [6] Green R. M., 2002, ANN VASC SURG, V6, P337
  • [7] Freely braided elements in Coxeter groups, II
    Green, RM
    Losonczy, J
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2004, 33 (01) : 26 - 39
  • [8] Mansour T, 2004, DISCRETE MATH THEOR, V6, P461
  • [9] MANSOUR T, 2000, DISCRET MATH THEOR C, V4, P67
  • [10] Mansour T., 2003, ELECTRON J COMB, V9