FBP initialization for transition artifacts reduction in statistical X-ray CT reconstruction.

被引:0
|
作者
Zbijewski, W [1 ]
Beekman, FJ [1 ]
机构
[1] UMC Utrecht, Imaging Sci Inst, Dept Nucl Med, NL-3584 CG Utrecht, Netherlands
来源
2003 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORD, VOLS 1-5 | 2004年
关键词
imaging; maximum likelihood; tomography; iterative reconstruction; artifact reduction;
D O I
10.1109/NSSMIC.2003.1352507
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
When statistical reconstruction (SR) algorithms are applied to X-ray CT data, the resulting images may contain some disturbing streak artifacts emerging from high-contrast structures. Extremely high number of iterations needed to remove such disturbancies may seriously slow down the reconstruction process. In this paper we demonstrate (using the Ordered Subsets Convex algorithm) that these artifacts can be adequately suppressed if statistical reconstruction is initialized with images generated by means of analytical algorithms like Filtered Back Projection (FBP). This allows the reconstruction time to be shortened by even as much as one order of magnitude. Although the initialization of the statistical algorithm with FBP image introduces some additional noise into the first iteration of OSC reconstruction, the resolution-noise trade-off and the contrast-to-noise ratio of final images are not markedly compromised.
引用
收藏
页码:2970 / 2972
页数:3
相关论文
共 50 条
  • [31] X-ray Phase Laminography with a Grating Interferometer using Iterative Reconstruction
    Harasse, Sebastien
    Yashiro, Wataru
    Momose, Atsushi
    INTERNATIONAL WORKSHOP ON X-RAY AND NEUTRON PHASE IMAGING WITH GRATINGS, 2012, 1466 : 163 - 168
  • [32] Development of X-ray CCD camera based X-ray micro-CT system
    Sarkar, Partha S.
    Ray, N. K.
    Pal, Manoj K.
    Baribaddala, Ravi
    Agrawal, Ashish
    Kashyap, Y.
    Sinha, A.
    Gadkari, S. C.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (02)
  • [33] Fast 3D reconstruction method for differential phase contrast X-ray CT
    McCann, Michael T.
    Nilchian, Masih
    Stampanoni, Marco
    Unser, Michael
    OPTICS EXPRESS, 2016, 24 (13): : 14564 - 14581
  • [34] Analysis of metallic archaeological artifacts by x-ray computed microtomography technique
    Machado, A. S.
    Silva, A. S. S.
    Campos, G. N.
    Gomes, C. S.
    Oliveira, D. F.
    Lopes, R. T.
    APPLIED RADIATION AND ISOTOPES, 2019, 151 : 274 - 279
  • [35] A study of metal artefact reduction for industrial X-ray CT system with limited radiation energy
    Yu, Wei
    Zeng, Li
    Yang, Xiangyu
    INSIGHT, 2014, 56 (02) : 69 - 74
  • [36] Software for X-ray fluorescence and scattering tomographic reconstruction
    Brunetti, A
    Golosio, B
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 141 (03) : 412 - 425
  • [37] A Multiresolution Image Reconstruction Method in X-ray MicroCT
    Costin, Marius
    Lazaro-Ponthus, Delphine
    Legoupil, Samuel
    Duvauchelle, Philippe
    Kaftandjian, Valerie
    2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, : 3871 - +
  • [38] Hyperspectral image reconstruction for x-ray fluorescence tomography
    Guersoy, Doga
    Bicer, Tekin
    Lanzirotti, Antonio
    Newville, Matthew G.
    De Carlo, Francesco
    OPTICS EXPRESS, 2015, 23 (07): : 9014 - 9023
  • [39] Polyenergetic known-component CT reconstruction with unknown material compositions and unknown x-ray spectra
    Xu, S.
    Uneri, A.
    Khanna, A. Jay
    Siewerdsen, J. H.
    Stayman, J. W.
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (08) : 3352 - 3374
  • [40] REGION BASED 4D TOMOGRAPHIC IMAGE RECONSTRUCTION: APPLICATION TO CARDIAC X-RAY CT
    Van Eyndhoven, G.
    Batenburg, K. J.
    Sijbers, J.
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 113 - 117