Spectral reflectance curves for multispectral imaging, combining different techniques and a neural network

被引:0
|
作者
Osorio-Gomez, C. A. [1 ]
Mejia-Ospino, E. [2 ]
Guerrero-Bermudez, J. E. [1 ]
机构
[1] Univ Ind Santander, Fac Ciencias, Escuela Fis, Grp Opt & Tratamiento Senales, Bucaramanga, Colombia
[2] Univ Ind Santander, Fac Ciencias, Escuela Quim, Lab Espect Atom Mol, Bucaramanga, Colombia
关键词
Artificia neural network; spectral reflectanc curves; multispectral imaging; curve fitting; RECONSTRUCTION;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper. we present an alternative procedure for the digital reconstruction of spectral reflectanc Curves of oil painting on canvas using multispectral imaging. The technique is based on a combination of the results obtained by pseudo-inverse, principal component analysis and interpolation; these results are the input to a feed-forward back propagation neural network fittin the values of the curves to a target obtained using a spectrophotometer Shimadzu UV2401. Goodness-of-Fit Coefficien (GFC), absolute mean error (ABE) and spectral Root Mean Squared error (RMS) are the metrics used to evaluate the performance of the procedure proposed.
引用
收藏
页码:120 / 124
页数:5
相关论文
共 12 条
  • [1] Implementation of a Neural Network for Multispectral Luminescence Imaging of Lake Pigment Paints
    Chane, Camille Simon
    Thoury, Mathieu
    Tournie, Aurelie
    Echard, Jean-Philippe
    APPLIED SPECTROSCOPY, 2015, 69 (04) : 430 - 441
  • [2] Spectral reflectance recovery using convolutional neural network
    Xiong, Yifan
    Wu, Guangyuan
    Li, Xiaozhou
    Niu, Shijun
    Han, Xiaomeng
    INTERNATIONAL CONFERENCE ON OPTOELECTRONIC MATERIALS AND DEVICES (ICOMD 2021), 2022, 12164
  • [3] Reconstruction Hyperspectral Reflectance Cube Based on Artificial Neural Networks for Multispectral Imaging System Applied to Dermatology
    Setiadi, Iwan Cony
    Nasution, Aulia M. T.
    THIRD INTERNATIONAL SEMINAR ON PHOTONICS, OPTICS, AND ITS APPLICATIONS (ISPHOA 2018), 2019, 11044
  • [4] Spectral Behavior of White Pigment Mixtures Using Reflectance, UltravioletFluorescence Spectroscopy, and Multispectral Imaging
    Pronti, Lucilla
    Felici, Anna Candida
    Menager, Matthieu
    Vieillescazes, Cathy
    Piacentini, Mario
    APPLIED SPECTROSCOPY, 2017, 71 (12) : 2616 - 2625
  • [5] Mossbauer spectral curve fitting combining fundamentally different techniques
    Susanto, Ferry
    de Souza, Paulo, Jr.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2016, 385 : 40 - 45
  • [6] MULTISPECTRAL IMAGING The Influence of Lighting Condition on Spectral Reflectance Reconstruction and Image Stitching of Traditional Japanese Paintings
    Toque, Jay Arre
    Sakatoku, Yuji
    Anders, Julia
    Murayama, Yusuke
    Ide-Ektessabi, Art
    IMAGAPP 2009: PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON COMPUTER IMAGING THEORY AND APPLICATIONS, 2009, : 13 - 20
  • [7] A Bayesian optimal convolutional neural network approach for classification of coal and gangue with multispectral imaging
    Hu, Feng
    Zhou, Mengran
    Yan, Pengcheng
    Liang, Zhe
    Li, Mei
    OPTICS AND LASERS IN ENGINEERING, 2022, 156
  • [8] Combining Feature Selection Techniques and Neurofuzzy Systems for the Prediction of Total Viable Counts in Beef Fillets Using Multispectral Imaging
    Alshejari, Abeer
    Kodogiannis, Vassilis S.
    Leonidis, Stavros
    SENSORS, 2023, 23 (23)
  • [9] SS-INR: Spatial-Spectral Implicit Neural Representation Network for Hyperspectral and Multispectral Image Fusion
    Wang, Xinying
    Cheng, Cheng
    Liu, Shenglan
    Song, Ruoxi
    Wang, Xianghai
    Feng, Lin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [10] Fully connected neural network for virtual monochromatic imaging in spectral computed tomography
    Feng, Chuqing
    Kang, Kejun
    Xing, Yuxiang
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)