Boundary Time Crystals

被引:219
作者
Iemini, F. [1 ]
Russomanno, A. [1 ,2 ,3 ]
Keeling, J. [4 ]
Schiro, M. [5 ]
Dalmonte, M. [1 ]
Fazio, R. [1 ,2 ,3 ]
机构
[1] Abdus Salaam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[2] CNR, NEST, Scuola Normale Super, I-56126 Pisa, Italy
[3] CNR, Ist Nanosci, I-56126 Pisa, Italy
[4] Univ St Andrews, SUPA, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
[5] Univ Paris Saclay, Inst Phys Theor, CNRS, CEA, F-91191 Gif Sur Yvette, France
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
COOPERATIVE FLUORESCENCE; SYSTEM; ORDER; SYMMETRY; OPERATOR; STATES; FIELD;
D O I
10.1103/PhysRevLett.121.035301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we introduce boundary time crystals. Here continuous time-translation symmetry breaking occurs only in a macroscopic fraction of a many-body quantum system. After introducing their definition and properties, we analyze in detail a solvable model where an accurate scaling analysis can be performed. The existence of the boundary time crystals is intimately connected to the emergence of a time-periodic steady state in the thermodynamic limit of a many-body open quantum system. We also discuss connections to quantum synchronization.
引用
收藏
页数:6
相关论文
共 53 条
[11]  
Diehl S, 2011, NAT PHYS, V7, P971, DOI [10.1038/NPHYS2106, 10.1038/nphys2106]
[12]   Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system [J].
Dimer, F. ;
Estienne, B. ;
Parkins, A. S. ;
Carmichael, H. J. .
PHYSICAL REVIEW A, 2007, 75 (01)
[13]   VOLTERRA CYCLES AND COOPERATIVE FLUORESCENCE CRITICAL-POINT [J].
DRUMMOND, PD ;
CARMICHAEL, HJ .
OPTICS COMMUNICATIONS, 1978, 27 (01) :160-164
[14]   Prethermal Phases of Matter Protected by Time-Translation Symmetry [J].
Else, Dominic V. ;
Bauer, Bela ;
Nayak, Chetan .
PHYSICAL REVIEW X, 2017, 7 (01)
[15]   Floquet Time Crystals [J].
Else, Dominic V. ;
Bauer, Bela ;
Nayak, Chetan .
PHYSICAL REVIEW LETTERS, 2016, 117 (09)
[16]  
Galve F., 2017, LECT GEN QUANTUM COR, P393
[17]  
Goldenfeld N., 2018, Lectures on Phase Transitions and the Renormalization Group
[18]   Discrete Time-Crystalline Order in Cavity and Circuit QED Systems [J].
Gong, Zongping ;
Hamazaki, Ryusuke ;
Ueda, Masahito .
PHYSICAL REVIEW LETTERS, 2018, 120 (04)
[20]   The Hamiltonian operator associated with some quantum stochastic evolutions [J].
Gregoratti, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 222 (01) :181-200